Portrait of Samira Abbasgholizadeh-Rahimi

Samira Abbasgholizadeh-Rahimi

Assistant Professor, McGill University, Department of Electrical and Computer Engineering
Research Topics
Knowledge Graphs
Medical Machine Learning
Natural Language Processing

Biography

Samira Abbasgholizadeh-Rahimi (BEng, PhD) is the Canada Research Chair in Advanced Digital Primary Health Care, an assistant professor in the Department of Family Medicine at McGill University and an associate academic member at Mila – Quebec Artificial Intelligence Institute.

Rahimi is an affiliated scientist at Lady Davis Institute for Medical Research at the Jewish General Hospital, the elected president of the Canadian Operational Research Society, and director of Artificial Intelligence in Family Medicine (AIFM).

Drawing on her interdisciplinary background, her research focuses on the development and implementation of advanced digital health technologies, such as AI-enabled decision support tools, in primary health care. Her research is dedicated to enhancing the prevention and management of chronic diseases, such as cardiovascular disease, with a particular emphasis on vulnerable populations.

Rahimi‘s work as a principal investigator has been funded by the Fonds de recherche du Québec – Santé (FRQS), the Natural Sciences and Engineering Research Council (NSERC), Roche Canada, the Brocher Foundation (Switzerland), and the Strategy for Patient-Oriented Research (SPOR) of the Canadian Institutes of Health Research (CIHR).

She is the recipient of numerous awards, including the 2022 New Investigator Primary Care Research Award of North American Primary Care Research Group (NAPCRG), which recognizes exceptional contributions by emerging investigators in the field of primary care research.

Current Students

Master's Research - McGill University
Professional Master's - McGill University

Publications

Integrating equity, diversity and inclusion throughout the lifecycle of AI within healthcare: a scoping review protocol
Milka Nyariro
Elham Emami
Pascale Caidor
Age-related bias and artificial intelligence: a scoping review
Charlene H Chu
Simon Donato-Woodger
Shehroz S Khan
Rune Nyrup
Kathleen Leslie
Alexandra Lyn
Tianyu Shi
Andria Bianchi
Amanda Grenier
Artificial Intelligence in COVID-19-Related Geriatric Care: A Scoping Review
Emina Burnazovic
Amanda Yee
Joshua Howard Levy
Genevieve Gore
Curriculum frameworks and educational programs in artificial intelligence for medical students, residents, and practicing physicians: a scoping review protocol.
Raymond Tolentino
Ashkan Baradaran
Genevieve Gore
Pierre Pluye
OBJECTIVE The aim of this scoping review is to synthesize knowledge from the literature on curriculum frameworks and current educational pro… (see more)grams that focus on the teaching and learning of artificial intelligence (AI) for medical students, residents, and practicing physicians. INTRODUCTION To advance the implementation of AI in clinical practice, physicians need to have a better understanding of AI and how to use it within clinical practice. Consequently, medical education must introduce AI topics and concepts into the curriculum. Curriculum frameworks are educational road maps to teaching and learning. Therefore, any existing AI curriculum frameworks must be reviewed and, if none exist, such a framework must be developed. INCLUSION CRITERIA This review will include articles that describe curriculum frameworks for teaching and learning AI in medicine, irrespective of country. All types of articles and study designs will be included, except conference abstracts and protocols. METHODS This review will follow the JBI methodology for scoping reviews. Keywords will first be identified from relevant articles. Another search will then be conducted using the identified keywords and index terms. The following databases will be searched: MEDLINE (Ovid), Embase (Ovid), Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL (EBSCOhost), and Scopus. Gray literature will also be searched. Articles will be limited to the English and French languages, commencing from the year 2000. The reference lists of all included articles will be screened for additional articles. Data will then be extracted from included articles and the results will be presented in a table.
Environmental Scan of Existing Digital Health Solutions for Older Adults Living with Neurocognitive Disorders (Mild and Major) and Their Informal Caregivers: Summary Report
Ambily Jose
Maxime Sasseville
Ellen Gorus
Anik Giguère
Anne Bourbonnais
Ronald Buyl
Marie-Pierre Gagnon
: Digital health has added numerous promising solutions to enhance the health and wellness of people living with dementia and other cognitiv… (see more)e problems and their informal caregivers. This work aims to summarize currently available digital health solutions and their related characteristics to develop a decision support tool for older adults living with mild or major neurocognitive disorders and their informal caregivers. We conducted an environmental scan to identify digital health solutions from a systematic review and targeted searches for grey literature covering the regions of Canada and Europe. Technological tools were scanned based on a preformatted extraction grid. We assessed their relevance based on selected attributes. We identified 100 available digital health solutions. The majority (56%) were not specific to dementia. Only 28% provided scientific evidence of their effectiveness. Remote patient care, movement tracking and cognitive exercises were the most common purposes of digital health solutions. Most solutions were presented as mobility aid tools, pill dispensers, apps, web, or a combination of these platforms. This knowledge will inform the development of a decision support tool to assist older adults and their informal caregivers in their search for adequate eHealth solutions according to their needs and preferences, based on trustable information.
Explainable Machine Learning Model to Predict COVID-19 Severity Among Older Adults in the Province of Quebec.
Charlene H Chu
Roland M. Grad
Mark Karanofsky
Mylene Arsenault
Charlene Esteban Ronquillo
Isabelle Vedel
K. McGilton
Machelle Wilchesky
Context: Patients over the age of 65 years are more likely to experience higher severity and mortality rates than other populations from COV… (see more)ID-19. Clinicians need assistance in supporting their decisions regarding the management of these patients. Artificial Intelligence (AI) can help with this regard. However, the lack of explainability-defined as "the ability to understand and evaluate the internal mechanism of the algorithm/computational process in human terms"-of AI is one of the major challenges to its application in health care. We know little about application of explainable AI (XAI) in health care. Objective: In this study, we aimed to evaluate the feasibility of the development of explainable machine learning models to predict COVID-19 severity among older adults. Design: Quantitative machine learning methods. Setting: Long-term care facilities within the province of Quebec. Participants: Patients 65 years and older presented to the hospitals who had a positive polymerase chain reaction test for COVID-19. Intervention: We used XAI-specific methods (e.g., EBM), machine learning methods (i.e., random forest, deep forest, and XGBoost), as well as explainable approaches such as LIME, SHAP, PIMP, and anchor with the mentioned machine learning methods. Outcome measures: Classification accuracy and area under the receiver operating characteristic curve (AUC). Results: The age distribution of the patients (n=986, 54.6% male) was 84.5□19.5 years. The best-performing models (and their performance) were as follows. Deep forest using XAI agnostic methods LIME (97.36% AUC, 91.65 ACC), Anchor (97.36% AUC, 91.65 ACC), and PIMP (96.93% AUC, 91.65 ACC). We found alignment with the identified reasoning of our models' predictions and clinical studies' findings-about the correlation of different variables such as diabetes and dementia, and the severity of COVID-19 in this population. Conclusions: The use of explainable machine learning models, to predict the severity of COVID-19 among older adults is feasible. We obtained a high-performance level as well as explainability in the prediction of COVID-19 severity in this population. Further studies are required to integrate these models into a decision support system to facilitate the management of diseases such as COVID-19 for (primary) health care providers and evaluate their usability among them.
Willingness to Engage in Shared Decision Making: Impact of an Educational Intervention for Resident Physicians (SDM-FM)
Roland M. Grad
A. Sandhu
Michael Ferrante
Vinita D'souza
Lily Puterman-Salzman
Gabrielle Stevens
G. Elwyn
Using incorpoRATE to examine clinician willingness to engage in shared decision making: A study of Family Medicine residents.
Roland Grad
A. Sandhu
Michael Ferrante
Vinita D'souza
Lily Puterman-Salzman
Gabrielle Stevens
G. Elwyn
Existing eHealth Solutions for Older Adults Living With Neurocognitive Disorders (Mild and Major) or Dementia and Their Informal Caregivers: Protocol for an Environmental Scan
Ambily Jose
Maxime Sasseville
Samantha Dequanter
Ellen Gorus
Anik Giguère
Anne Bourbonnais
Ronald Buyl
Marie-Pierre Gagnon
Background Dementia is one of the main public health priorities for current and future societies worldwide. Over the past years, eHealth sol… (see more)utions have added numerous promising solutions to enhance the health and wellness of people living with dementia-related cognitive problems and their primary caregivers. Previous studies have shown that an environmental scan identifies the knowledge-to-action gap meaningfully. This paper presents the protocol of an environmental scan to monitor the currently available eHealth solutions targeting dementia and other neurocognitive disorders against selected attributes. Objective This study aims to identify the characteristics of currently available eHealth solutions recommended for older adults with cognitive problems and their informal caregivers. To inform the recommendations regarding eHealth solutions for these people, it is important to obtain a comprehensive view of currently available technologies and document their outcomes and conditions of success. Methods We will perform an environmental scan of available eHealth solutions for older adults with cognitive impairment or dementia and their informal caregivers. Potential solutions will be initially identified from a previous systematic review. We will also conduct targeted searches for gray literature on Google and specialized websites covering the regions of Canada and Europe. Technological tools will be scanned based on a preformatted extraction grid. The relevance and efficiency based on the selected attributes will be assessed. Results We will prioritize relevant solutions based on the needs and preferences identified from a qualitative study among older adults with cognitive impairment or dementia and their informal caregivers. Conclusions This environmental scan will identify eHealth solutions that are currently available and scientifically appraised for older adults with cognitive impairment or dementia and their informal caregivers. This knowledge will inform the development of a decision support tool to assist older adults and their informal caregivers in their search for adequate eHealth solutions according to their needs and preferences based on trustable information. International Registered Report Identifier (IRRID) DERR1-10.2196/41015
The use of artificial intelligence and virtual reality in doctor-patient risk communication: A scoping review.
Ryan Antel
Elena Guadagno
Jason M. Harley
GCNFusion: An efficient graph convolutional network based model for information diffusion
Bahare Fatemi
Soheila Mehr Molaei
Shirui Pan
Application of Artificial Intelligence in Shared Decision Making: Scoping Review
Michelle Cwintal
Yuhui Huang
Pooria Ghadiri
Roland Grad
Genevieve Gore
Hervé Tchala Vignon Zomahoun
France Légaré
Pierre Pluye
Background Artificial intelligence (AI) has shown promising results in various fields of medicine. It has the potential to facilitate shared… (see more) decision making (SDM). However, there is no comprehensive mapping of how AI may be used for SDM. Objective We aimed to identify and evaluate published studies that have tested or implemented AI to facilitate SDM. Methods We performed a scoping review informed by the methodological framework proposed by Levac et al, modifications to the original Arksey and O'Malley framework of a scoping review, and the Joanna Briggs Institute scoping review framework. We reported our results based on the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) reporting guideline. At the identification stage, an information specialist performed a comprehensive search of 6 electronic databases from their inception to May 2021. The inclusion criteria were: all populations; all AI interventions that were used to facilitate SDM, and if the AI intervention was not used for the decision-making point in SDM, it was excluded; any outcome related to patients, health care providers, or health care systems; studies in any health care setting, only studies published in the English language, and all study types. Overall, 2 reviewers independently performed the study selection process and extracted data. Any disagreements were resolved by a third reviewer. A descriptive analysis was performed. Results The search process yielded 1445 records. After removing duplicates, 894 documents were screened, and 6 peer-reviewed publications met our inclusion criteria. Overall, 2 of them were conducted in North America, 2 in Europe, 1 in Australia, and 1 in Asia. Most articles were published after 2017. Overall, 3 articles focused on primary care, and 3 articles focused on secondary care. All studies used machine learning methods. Moreover, 3 articles included health care providers in the validation stage of the AI intervention, and 1 article included both health care providers and patients in clinical validation, but none of the articles included health care providers or patients in the design and development of the AI intervention. All used AI to support SDM by providing clinical recommendations or predictions. Conclusions Evidence of the use of AI in SDM is in its infancy. We found AI supporting SDM in similar ways across the included articles. We observed a lack of emphasis on patients’ values and preferences, as well as poor reporting of AI interventions, resulting in a lack of clarity about different aspects. Little effort was made to address the topics of explainability of AI interventions and to include end-users in the design and development of the interventions. Further efforts are required to strengthen and standardize the use of AI in different steps of SDM and to evaluate its impact on various decisions, populations, and settings.