Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Romina Abachi
Alumni
Publications
Calibrated Value-Aware Model Learning with Probabilistic Environment Models
The idea of value-aware model learning, that models should produce accurate value estimates, has gained prominence in model-based reinforcem… (see more)ent learning. The MuZero loss, which penalizes a model’s value function prediction compared to the ground-truth value function, has been utilized in several prominent empirical works in the literature. However, theoretical investigation into its strengths and weaknesses is limited. In this paper, we analyze the family of value-aware model learning losses, which includes the popular MuZero loss. We show that these losses, as normally used, are uncalibrated surrogate losses, which means that they do not always recover the correct model and value function. Building on this insight, we propose corrections to solve this issue. Furthermore, we investigate the interplay between the loss calibration, latent model architectures, and auxiliary losses that are commonly employed when training MuZero-style agents. We show that while deterministic models can be sufficient to predict accurate values, learning calibrated stochastic models is still advantageous.
2025-10-06
Proceedings of the 42nd International Conference on Machine Learning (published)
The idea of value-aware model learning, that models should produce accurate value estimates, has gained prominence in model-based reinforcem… (see more)ent learning. The MuZero loss, which penalizes a model's value function prediction compared to the ground-truth value function, has been utilized in several prominent empirical works in the literature. However, theoretical investigation into its strengths and weaknesses is limited. In this paper, we analyze the family of value-aware model learning losses, which includes the popular MuZero loss. We show that these losses, as normally used, are uncalibrated surrogate losses, which means that they do not always recover the correct model and value function. Building on this insight, we propose corrections to solve this issue. Furthermore, we investigate the interplay between the loss calibration, latent model architectures, and auxiliary losses that are commonly employed when training MuZero-style agents. We show that while deterministic models can be sufficient to predict accurate values, learning calibrated stochastic models is still advantageous.
The idea of value-aware model learning, that models should produce accurate value estimates, has gained prominence in model-based reinforcem… (see more)ent learning. The MuZero loss, which penalizes a model's value function prediction compared to the ground-truth value function, has been utilized in several prominent empirical works in the literature. However, theoretical investigation into its strengths and weaknesses is limited. In this paper, we analyze the family of value-aware model learning losses, which includes the popular MuZero loss. We show that these losses, as normally used, are uncalibrated surrogate losses, which means that they do not always recover the correct model and value function. Building on this insight, we propose corrections to solve this issue. Furthermore, we investigate the interplay between the loss calibration, latent model architectures, and auxiliary losses that are commonly employed when training MuZero-style agents. We show that while deterministic models can be sufficient to predict accurate values, learning calibrated stochastic models is still advantageous.
The idea of value-aware model learning, that models should produce accurate value estimates, has gained prominence in model-based reinforcem… (see more)ent learning. The MuZero loss, which penalizes a model's value function prediction compared to the ground-truth value function, has been utilized in several prominent empirical works in the literature. However, theoretical investigation into its strengths and weaknesses is limited. In this paper, we analyze the family of value-aware model learning losses, which includes the popular MuZero loss. We show that these losses, as normally used, are uncalibrated surrogate losses, which means that they do not always recover the correct model and value function. Building on this insight, we propose corrections to solve this issue. Furthermore, we investigate the interplay between the loss calibration, latent model architectures, and auxiliary losses that are commonly employed when training MuZero-style agents. We show that while deterministic models can be sufficient to predict accurate values, learning calibrated stochastic models is still advantageous.