Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Videos can be created by first outlining a global view of the scene and then adding local details. Inspired by this idea we propose a cascad… (see more)ed model for video generation which follows a coarse to fine approach. First our model generates a low resolution video, establishing the global scene structure, which is then refined by subsequent cascade levels operating at larger resolutions. We train each cascade level sequentially on partial views of the videos, which reduces the computational complexity of our model and makes it scalable to high-resolution videos with many frames. We empirically validate our approach on UCF101 and Kinetics-600, for which our model is competitive with the state-of-the-art. We further demonstrate the scaling capabilities of our model and train a three-level model on the BDD100K dataset which generates 256x256 pixels videos with 48 frames.
2022-08-21
2022 26th International Conference on Pattern Recognition (ICPR) (published)
We introduce a variational inference model called VIM, for Variational Independent Modules, for sequential data that learns and infers laten… (see more)t representations as a set of objects and discovers modular causal mechanisms over these objects. These mechanisms - which we call modules - are independently parametrized, define the stochastic transitions of entities and are shared across entities. At each time step, our model infers from a low-level input sequence a high-level sequence of categorical latent variables to select which transition modules to apply to which high-level object. We evaluate this model in video prediction tasks where the goal is to predict multi-modal future events given previous observations. We demonstrate empirically that VIM can model 2D visual sequences in an interpretable way and is able to identify the underlying dynamically instantiated mechanisms of the generation process. We additionally show that the learnt modules can be composed at test time to generalize to out-of-distribution observations.
2022-06-28
Proceedings of the First Conference on Causal Learning and Reasoning (published)
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the … (see more)representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures, while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance, on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy, and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark. Our code is publicly available.
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the … (see more)representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures, while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance, on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy, and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark. Our code is publicly available.
We propose INFERNO, a method to infer object-centric representations of visual scenes without annotations.
Our method decomposes a scene int… (see more)o multiple objects, with each object having a structured representation that disentangles its shape, appearance and pose.
Each object representation defines a localized neural radiance field used to generate 2D views of the scene through differentiable rendering.
Our model is subsequently trained by minimizing a reconstruction loss between inputs and corresponding rendered scenes.
We empirically show that INFERNO discovers objects in a scene without supervision.
We also validate the interpretability of the learned representations by manipulating inferred scenes and showing the corresponding effect in the rendered output.
Finally, we demonstrate the usefulness of our 3D object representations in a visual reasoning task using the CATER dataset.
Recent work has seen the development of general purpose neural architectures that can be trained to perform tasks across diverse data modali… (see more)ties. General purpose models typically make few assumptions about the underlying data-structure and are known to perform well in the large-data regime. At the same time, there has been growing interest in modular neural architectures that represent the data using sparsely interacting modules. These models can be more robust out-of-distribution, computationally efficient, and capable of sample-efficient adaptation to new data. However, they tend to make domain-specific assumptions about the data, and present challenges in how module behavior (i.e., parameterization) and connectivity (i.e., their layout) can be jointly learned. In this work, we introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs) that jointly learns the parameterization and a sparse connectivity of neural modules without using domain knowledge. NACs are best understood as the combination of two systems that are jointly trained end-to-end: one that determines the module configuration and the other that executes it on an input. We demonstrate qualitatively that NACs learn diverse and meaningful module configurations on the NLVR2 dataset without additional supervision. Quantitatively, we show that by incorporating modularity in this way, NACs improve upon a strong non-modular baseline in terms of low-shot adaptation on CIFAR and CUBs dataset by about 10%, and OOD robustness on Tiny ImageNet-R by about 2.5%. Further, we find that NACs can achieve an 8x speedup at inference time while losing less than 3% performance. Finally, we find NACs to yield competitive results on diverse data modalities spanning point-cloud classification, symbolic processing and text-classification from ASCII bytes, thereby confirming its general purpose nature.
Predicting future frames for a video sequence is a challenging generative modeling task. Promising approaches include probabilistic latent v… (see more)ariable models such as the Variational Auto-Encoder. While VAEs can handle uncertainty and model multiple possible future outcomes, they have a tendency to produce blurry predictions. In this work we argue that this is a sign of underfitting. To address this issue, we propose to increase the expressiveness of the latent distributions and to use higher capacity likelihood models. Our approach relies on a hierarchy of latent variables, which defines a family of flexible prior and posterior distributions in order to better model the probability of future sequences. We validate our proposal through a series of ablation experiments and compare our approach to current state-of-the-art latent variable models. Our method performs favorably under several metrics in three different datasets.
2019-11-02
2019 IEEE/CVF International Conference on Computer Vision (ICCV) (published)
Stochastic Gradient Descent (SGD) based training of neural networks with a large learning rate or a small batch-size typically ends in well-… (see more)generalizing, flat regions of the weight space, as indicated by small eigenvalues of the Hessian of the training loss. However, the curvature along the SGD trajectory is poorly understood. An empirical investigation shows that initially SGD visits increasingly sharp regions, reaching a maximum sharpness determined by both the learning rate and the batch-size of SGD. When studying the SGD dynamics in relation to the sharpest directions in this initial phase, we find that the SGD step is large compared to the curvature and commonly fails to minimize the loss along the sharpest directions. Furthermore, using a reduced learning rate along these directions can improve training speed while leading to both sharper and better generalizing solutions compared to vanilla SGD. In summary, our analysis of the dynamics of SGD in the subspace of the sharpest directions shows that they influence the regions that SGD steers to (where larger learning rate or smaller batch size result in wider regions visited), the overall training speed, and the generalization ability of the final model.
Stochastic gradient descent (SGD) is able to find regions that generalize well, even in drastically over-parametrized models such as deep ne… (see more)ural networks. We observe that noise in SGD controls the spectral norm and conditioning of the Hessian throughout the training. We hypothesize the cause of this phenomenon is due to the dynamics of neurons saturating their non-linearity along the largest curvature directions, thus leading to improved conditioning.