Portrait of Negar Rostamzadeh is unavailable

Negar Rostamzadeh

Alumni

Publications

Understanding the Local Geometry of Generative Model Manifolds
Ahmed Imtiaz Humayun
Candice Schumann
Deep generative models learn continuous representations of complex data manifolds using a finite number of samples during training. For a pr… (see more)e-trained generative model, the common way to evaluate the quality of the manifold representation learned, is by computing global metrics like Fr\'echet Inception Distance using a large number of generated and real samples. However, generative model performance is not uniform across the learned manifold, e.g., for \textit{foundation models} like Stable Diffusion generation performance can vary significantly based on the conditioning or initial noise vector being denoised. In this paper we study the relationship between the \textit{local geometry of the learned manifold} and downstream generation. Based on the theory of continuous piecewise-linear (CPWL) generators, we use three geometric descriptors - scaling (
Position: Cracking the Code of Cascading Disparity Towards Marginalized Communities
Bias-inducing geometries: exactly solvable data model with fairness implications
Stefano Sarao Mannelli
Federica Gerace
Luca Saglietti
Machine learning (ML) may be oblivious to human bias but it is not immune to its perpetuation. Marginalisation and iniquitous group represen… (see more)tation are often traceable in the very data used for training, and may be reflected or even enhanced by the learning models. In this abstract, we aim to clarify the role played by data geometry in the emergence of ML bias. We introduce an exactly solvable high-dimensional model of data imbalance, where parametric control over the many bias-inducing factors allows for an extensive exploration of the bias inheritance mechanism. Through the tools of statistical physics, we analytically characterise the typical properties of learning models trained in this synthetic framework and obtain exact predictions for the observables that are commonly employed for fairness assessment. Simplifying the nature of the problem to its minimal components, we can retrace and unpack typical unfairness behaviour observed on real-world datasets
Bias-inducing geometries: exactly solvable data model with fairness implications
Stefano Sarao Mannelli
Federica Gerace
Luca Saglietti
Machine learning (ML) may be oblivious to human bias but it is not immune to its perpetuation. Marginalisation and iniquitous group represen… (see more)tation are often traceable in the very data used for training, and may be reflected or even enhanced by the learning models. In this abstract, we aim to clarify the role played by data geometry in the emergence of ML bias. We introduce an exactly solvable high-dimensional model of data imbalance, where parametric control over the many bias-inducing factors allows for an extensive exploration of the bias inheritance mechanism. Through the tools of statistical physics, we analytically characterise the typical properties of learning models trained in this synthetic framework and obtain exact predictions for the observables that are commonly employed for fairness assessment. Simplifying the nature of the problem to its minimal components, we can retrace and unpack typical unfairness behaviour observed on real-world datasets
On The Local Geometry of Deep Generative Manifolds
Ahmed Imtiaz Humayun
Candice Schumann
In this paper, we study theoretically inspired local geometric descriptors of the data manifolds approximated by pre-trained generative mode… (see more)ls. The descriptors – local scaling (ψ), local rank (ν), and local complexity (δ) — characterize the uncertainty, dimensionality, and smoothness on the learned manifold, using only the network weights and architecture. We investigate and emphasize their critical role in understanding generative models. Our analysis reveals that the local geometry is intricately linked to the quality and diversity of generated outputs. Additionally, we see that the geometric properties are distinct for out-of-distribution (OOD) inputs as well as for prompts memorized by Stable Diffusion, showing the possible application of our proposed descriptors for downstream detection and assessment of pre-trained generative models.
A toolbox for surfacing health equity harms and biases in large language models
Stephen R. Pfohl
Heather Cole-Lewis
Rory A Sayres
Darlene Neal
Mercy Nyamewaa Asiedu
Awa Dieng
Nenad Tomasev
Qazi Mamunur Rashid
Shekoofeh Azizi
Liam G. McCoy
L. A. Celi
Yun Liu
Mike Schaekermann
Alanna Walton
Alicia Parrish
Chirag Nagpal
Preeti Singh
Akeiylah Dewitt
P. A. Mansfield … (see 10 more)
Sushant Prakash
Katherine Heller
Alan Karthikesalingam
Christopher Semturs
Joelle Barral
Greg C. Corrado
Yossi Matias
Jamila Smith-Loud
Ivor Horn
Karan Singhal
A toolbox for surfacing health equity harms and biases in large language models
Stephen R. Pfohl
Heather Cole-Lewis
Rory A Sayres
Darlene Neal
Mercy Nyamewaa Asiedu
Awa Dieng
Nenad Tomasev
Qazi Mamunur Rashid
Shekoofeh Azizi
Liam G. McCoy
L. A. Celi
Yun Liu
Mike Schaekermann
Alanna Walton
Alicia Parrish
Chirag Nagpal
Preeti Singh
Akeiylah Dewitt
P. A. Mansfield … (see 10 more)
Sushant Prakash
Katherine Heller
Alan Karthikesalingam
Christopher Semturs
Joelle Barral
Greg C. Corrado
Yossi Matias
Jamila Smith-Loud
Ivor Horn
Karan Singhal
A toolbox for surfacing health equity harms and biases in large language models
Stephen R. Pfohl
Heather Cole-Lewis
Rory A Sayres
Darlene Neal
Mercy Nyamewaa Asiedu
Awa Dieng
Nenad Tomasev
Qazi Mamunur Rashid
Shekoofeh Azizi
Liam G. McCoy
L. A. Celi
Yun Liu
Mike Schaekermann
Alanna Walton
Alicia Parrish
Chirag Nagpal
Preeti Singh
Akeiylah Dewitt
P. A. Mansfield … (see 10 more)
Sushant Prakash
Katherine Heller
Alan Karthikesalingam
Christopher Semturs
Joelle Barral
Greg C. Corrado
Yossi Matias
Jamila Smith-Loud
Ivor Horn
Karan Singhal
A toolbox for surfacing health equity harms and biases in large language models
Stephen R. Pfohl
Heather Cole-Lewis
Rory A Sayres
Darlene Neal
Mercy Nyamewaa Asiedu
Awa Dieng
Nenad Tomasev
Qazi Mamunur Rashid
Shekoofeh Azizi
Liam G. McCoy
L. A. Celi
Yun Liu
Mike Schaekermann
Alanna Walton
Alicia Parrish
Chirag Nagpal
Preeti Singh
Akeiylah Dewitt
P. A. Mansfield … (see 10 more)
Sushant Prakash
Katherine Heller
Alan Karthikesalingam
Christopher Semturs
Joelle Barral
Greg C. Corrado
Yossi Matias
Jamila Smith-Loud
Ivor Horn
Karan Singhal
The value of standards for health datasets in artificial intelligence-based applications
Anmol Arora
Joseph E. Alderman
Joanne Palmer
Shaswath Ganapathi
Elinor Laws
Melissa D. McCradden
Lauren Oakden-Rayner
Stephen R. Pfohl
Marzyeh Ghassemi
Francis McKay
Darren Treanor
Bilal Mateen
Jacqui Gath
Adewole O. Adebajo
Stephanie Kuku
Rubeta Matin
Katherine Heller
Elizabeth Sapey
Neil J. Sebire … (see 4 more)
Heather Cole-Lewis
Melanie Calvert
Alastair Denniston
Xiaoxuan Liu
Breaking Barriers to Creative Expression: Co-Designing and Implementing an Accessible Text-to-Image Interface
Atieh Taheri
Mohammad Izadi
Gururaj Shriram
Shaun Kane
Text-to-image generation models have grown in popularity due to their ability to produce high-quality images from a text prompt. One use for… (see more) this technology is to enable the creation of more accessible art creation software. In this paper, we document the development of an alternative user interface that reduces the typing effort needed to enter image prompts by providing suggestions from a large language model, developed through iterative design and testing within the project team. The results of this testing demonstrate how generative text models can support the accessibility of text-to-image models, enabling users with a range of abilities to create visual art.
Beyond the ML Model: Applying Safety Engineering Frameworks to Text-to-Image Development
Renee Shelby
Andrew J Smart
Renelito Delos Santos
Identifying potential social and ethical risks in emerging machine learning (ML) models and their applications remains challenging. In this … (see more)work, we applied two well-established safety engineering frameworks (FMEA, STPA) to a case study involving text-to-image models at three stages of the ML product development pipeline: data processing, integration of a T2I model with other models, and use. Results of our analysis demonstrate the safety frameworks – both of which are not designed explicitly examine social and ethical risks – can uncover failure and hazards that pose social and ethical risks. We discovered a broad range of failures and hazards (i.e., functional, social, and ethical) by analyzing interactions (i.e., between different ML models in the product, between the ML product and user, and between development teams) and processes (i.e., preparation of training data or workflows for using an ML service/product). Our findings underscore the value and importance of examining beyond an ML model in examining social and ethical risks, especially when we have minimal information about an ML model.