A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Deep Generative Models are frequently used to learn continuous representations of complex data distributions using a finite number of sample… (see more)s. For any generative model, including pre-trained foundation models with GAN, Transformer or Diffusion architectures, generation performance can vary significantly based on which part of the learned data manifold is sampled. In this paper we study the post-training local geometry of the learned manifold and its relationship to generation outcomes for models ranging from toy settings to the latent decoder of the near state-of-the-art Stable Diffusion 1.4 Text-to-Image model. Building on the theory of continuous piecewise-linear (CPWL) generators, we characterize the local geometry in terms of three geometric descriptors - scaling (
Deep generative models learn continuous representations of complex data manifolds using a finite number of samples during training. For a pr… (see more)e-trained generative model, the common way to evaluate the quality of the manifold representation learned, is by computing global metrics like Fr\'echet Inception Distance using a large number of generated and real samples. However, generative model performance is not uniform across the learned manifold, e.g., for \textit{foundation models} like Stable Diffusion generation performance can vary significantly based on the conditioning or initial noise vector being denoised. In this paper we study the relationship between the \textit{local geometry of the learned manifold} and downstream generation. Based on the theory of continuous piecewise-linear (CPWL) generators, we use three geometric descriptors - scaling (
In this paper, we study theoretically inspired local geometric descriptors of the data manifolds approximated by pre-trained generative mode… (see more)ls. The descriptors – local scaling (ψ), local rank (ν), and local complexity (δ) — characterize the uncertainty, dimensionality, and smoothness on the learned manifold, using only the network weights and architecture. We investigate and emphasize their critical role in understanding generative models. Our analysis reveals that the local geometry is intricately linked to the quality and diversity of generated outputs. Additionally, we see that the geometric properties are distinct for out-of-distribution (OOD) inputs as well as for prompts memorized by Stable Diffusion, showing the possible application of our proposed descriptors for downstream detection and assessment of pre-trained generative models.
Current deep neural networks (DNNs) have achieved remarkable accuracy in various downstream tasks. However, their training and fine-tuning a… (see more)re challenging due to several factors, such as limited computational resources, extended training and fine-tuning times, and over-fitting due to small datasets. To address these challenges, we propose a three-stage fast fine-tuning method that efficiently trains DNNs for edge devices. Our method combines curriculum learning and domain adaptation techniques to accelerate training while achieving comparable performance. First, we develop a data curriculum approach, which ranks the dataset according to difficulty and split it into the source domain (containing easy data) and the target domain (containing difficult data). Second, we adapt the pretrained model from the source domain to the target domain using an unsupervised domain adaptation (UDA) method called Deep CORAL. Finally, we continue training the adapted model on the source domain with fewer epochs. Our method achieves high accuracy quickly on various modern neural network architectures and datasets such as CIFAR-10, CIFAR-100, and CINIC-10.
2023-06-01
Canadian Conference on Computer and Robot Vision (published)