Portrait of Kanika Madan is unavailable

Kanika Madan

PhD - Université de Montréal
Supervisor
Research Topics
Deep Learning
Generative Models
GFlowNets
Meta-Learning
Natural Language Processing
Out-of-Distribution (OOD) Generalization
Reinforcement Learning
Representation Learning

Publications

Meta Attention Networks: Meta Learning Attention To Modulate Information Between Sparsely Interacting Recurrent Modules
Decomposing knowledge into interchangeable pieces promises a generalization advantage when, at some level of representation, the learner is … (see more)likely to be faced with situations requiring novel combinations of existing pieces of knowledge or computation. We hypothesize that such a decomposition of knowledge is particularly relevant for higher levels of representation as we see this at work in human cognition and natural language in the form of systematicity or systematic generalization. To study these ideas, we propose a particular training framework in which we assume that the pieces of knowledge an agent needs, as well as its reward function are stationary and can be re-used across tasks and changes in distribution. As the learner is confronted with variations in experiences, the attention selects which modules should be adapted and the parameters of those selected modules are adapted fast, while the parameters of attention mechanisms are updated slowly as meta-parameters. We find that both the meta-learning and the modular aspects of the proposed system greatly help achieve faster learning in experiments with reinforcement learning setup involving navigation in a partially observed grid world.