The AI Policy Frontline: Driving Evidence-Based Solutions, gathers leading researchers, policymakers, government officials, and industry experts to address some of the most critical challenges and opportunities at the intersection of Artificial Intelligence and public policy today.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Kanika Madan
Alumni
Publications
Meta Attention Networks: Meta Learning Attention To Modulate Information Between Sparsely Interacting Recurrent Modules
Decomposing knowledge into interchangeable pieces promises a generalization advantage when, at some level of representation, the learner is … (see more)likely to be faced with situations requiring novel combinations of existing pieces of knowledge or computation. We hypothesize that such a decomposition of knowledge is particularly relevant for higher levels of representation as we see this at work in human cognition and natural language in the form of systematicity or systematic generalization. To study these ideas, we propose a particular training framework in which we assume that the pieces of knowledge an agent needs, as well as its reward function are stationary and can be re-used across tasks and changes in distribution. As the learner is confronted with variations in experiences, the attention selects which modules should be adapted and the parameters of those selected modules are adapted fast, while the parameters of attention mechanisms are updated slowly as meta-parameters. We find that both the meta-learning and the modular aspects of the proposed system greatly help achieve faster learning in experiments with reinforcement learning setup involving navigation in a partially observed grid world.