Portrait of Julien Cohen-Adad

Julien Cohen-Adad

Associate Academic Member
Associate Professor, Polytechnique Montréal, Electrical Engineering Department
Adjunct Professor, Université de Montréal, Department of Neuroscience
Research Topics
Medical Machine Learning

Biography

Julien Cohen-Adad is a professor at Polytechnique Montréal and the associate director of the Neuroimaging Functional Unit at Université de Montréal. He is also the Canada Research Chair in Quantitative Magnetic Resonance Imaging.

His research focuses on advancing neuroimaging methods with the help of AI. Some examples of projects are:

- Multi-modal training for medical imaging tasks (segmentation of pathologies, diagnosis, etc.)

- Adding prior from MRI physics to improve model generalization

- Incorporating uncertainty measures to deal with inter-rater variability

- Continuous learning strategies when data sharing is restricted

- Bringing AI methods into clinical radiology routine via user-friendly software solutions

Cohen-Adad also leads multiple open-source software projects that are benefiting the research and clinical community (see neuro.polymtl.ca/software.html). In short, he loves MRI with strong magnets, neuroimaging, programming and open science!

Current Students

Collaborating Alumni - Polytechnique Montréal
Co-supervisor :
PhD - Polytechnique Montréal
Co-supervisor :
PhD - Polytechnique Montréal
Master's Research - Polytechnique Montréal
Master's Research - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal
Collaborating researcher
Master's Research - Université de Montréal
Master's Research - Polytechnique Montréal
Postdoctorate - Polytechnique Montréal

Publications

Histology-informed automatic parcellation of white matter tracts in the rat spinal cord
Harris Nami
Christian S. Perone
The white matter is organized into “tracts” or “bundles,” which connect different parts of the central nervous system. Knowing where… (see more) these tracts are located in each individual is important for understanding the cause of potential sensorial, motor or cognitive deficits and for developing appropriate treatments. Traditionally, tracts are found using tracer injection, which is a difficult, slow and poorly scalable technique. However, axon populations from a given tract exhibit specific characteristics in terms of morphometrics and myelination. Hence, the delineation of tracts could, in principle, be done based on their morphometry. The objective of this study was to generate automatic parcellation of the rat spinal white matter tracts using the manifold information from scanning electron microscopy images of the entire spinal cord. The axon morphometrics (axon density, axon diameter, myelin thickness and g-ratio) were computed pixelwise following automatic axon segmentation using AxonSeg. The parcellation was based on an agglomerative clustering algorithm to group the tracts. Results show that axon morphometrics provide sufficient information to automatically identify some white matter tracts in the spinal cord, however, not all tracts were correctly identified. Future developments of microstructure quantitative MRI even bring hope for a personalized clustering of white matter tracts in each individual patient. The generated atlas and the associated code can be found at https://github.com/neuropoly/tract-clustering.
Shimming toolbox: An open‐source software toolbox for B0 and B1 shimming in MRI
Alexandre D'Astous
Gaspard Cereza
Daniel Papp
Kyle M. Gilbert
Jason P. Stockmann
Eva Alonso‐Ortiz
Shimming toolbox: An open‐source software toolbox for <scp>B0</scp> and <scp>B1</scp> shimming in MRI
Alexandre D'Astous
Gaspard Cereza
Daniel Papp
Kyle M. Gilbert
Jason P. Stockmann
Eva Alonso‐Ortiz
Automatic measure and normalization of spinal cord cross-sectional area using the pontomedullary junction
Sandrine Bédard
Segmentation of Multiple Sclerosis Lesions across Hospitals: Learn Continually or Train from Scratch?
Enamundram Naga Karthik
Anne Kerbrat
Pierre Labauge
Tobias Granberg
Jason F. Talbott
Daniel S Reich
Massimo Filippi
Rohit Bakshi
Virginie Callot
Segmentation of Multiple Sclerosis (MS) lesions is a challenging problem. Several deep-learning-based methods have been proposed in recent y… (see more)ears. However, most methods tend to be static, that is, a single model trained on a large, specialized dataset, which does not generalize well. Instead, the model should learn across datasets arriving sequentially from different hospitals by building upon the characteristics of lesions in a continual manner. In this regard, we explore experience replay, a well-known continual learning method, in the context of MS lesion segmentation across multi-contrast data from 8 different hospitals. Our experiments show that replay is able to achieve positive backward transfer and reduce catastrophic forgetting compared to sequential fine-tuning. Furthermore, replay outperforms the multi-domain training, thereby emerging as a promising solution for the segmentation of MS lesions. The code is available at this link: https://github.com/naga-karthik/continual-learning-ms
Recommendations and guidelines from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 2 -- Ex vivo imaging
Kurt G Schilling
Francesco Grussu
Andrada Ianus
Brian Hansen
Manisha Aggarwal
Stijn Michielse
Fatima Nasrallah
Warda Syeda
Nian Wang
Jelle Veraart
Alard Roebroeck
Andrew F. Bagdasarian
Cornelius Eichner
Farshid Sepehrband
Jan Zimmermann
Ben Jeurissen
Lucio Frydman
Yohan van de Looij
David Hike
Jeff F. Dunn … (see 30 more)
Karla Miller
Bennett Landman
Noam Shemesh
Arthur Anderson
Emilie McKinnon
Shawna Farquharson
Flavio Dell’Acqua
Carlo Pierpaoli
Ivana Drobnjak
Alexander Leemans
Kevin D. Harkins
Maxime Descoteaux
Duan Xu
Mathieu D. Santin
Samuel C. Grant
Andre Obenaus
Gene S. Kim
Dan Wu
Denis Le Bihan
Stephen J. Blackband
Luisa Ciobanu
Els Fieremans
Ruiliang Bai
Trygve B. Leergaard
Jiangyang Zhang
Tim B. Dyrby
G. Allan Johnson
Matthew D. Budde
Ileana O. Jelescu
Recommendations and guidelines from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 -- In vivo small-animal imaging
Ileana O. Jelescu
Francesco Grussu
Andrada Ianus
Brian Hansen
Manisha Aggarwal
Stijn Michielse
Fatima Nasrallah
Warda Syeda
Nian Wang
Jelle Veraart
Alard Roebroeck
Andrew F. Bagdasarian
Cornelius Eichner
Farshid Sepehrband
Jan Zimmermann
Ben Jeurissen
Lucio Frydman
Yohan van de Looij
David Hike
Jeff F. Dunn … (see 30 more)
Karla Miller
Bennett Landman
Noam Shemesh
Arthur Anderson
Emilie McKinnon
Shawna Farquharson
Flavio Dell’Acqua
Carlo Pierpaoli
Ivana Drobnjak
Alexander Leemans
Kevin D. Harkins
Maxime Descoteaux
Duan Xu
Mathieu D. Santin
Samuel C. Grant
Andre Obenaus
Gene S. Kim
Dan Wu
Denis Le Bihan
Stephen J. Blackband
Luisa Ciobanu
Els Fieremans
Ruiliang Bai
Trygve B. Leergaard
Jiangyang Zhang
Tim B. Dyrby
G. Allan Johnson
Matthew D. Budde
Kurt G Schilling
The value of in vivo preclinical diffusion MRI (dMRI) is substantial. Small-animal dMRI has been used for methodological development and val… (see more)idation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. Many of the influential works in this field were first performed in small animals or ex vivo samples. The steps from animal setup and monitoring, to acquisition, analysis, and interpretation are complex, with many decisions that may ultimately affect what questions can be answered using the data. This work aims to serve as a reference, presenting selected recommendations and guidelines from the diffusion community, on best practices for preclinical dMRI of in vivo animals. In each section, we also highlight areas for which no guidelines exist (and why), and where future work should focus. We first describe the value that small animal imaging adds to the field of dMRI, followed by general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in animal species and disease models and discuss how they are appropriate for different studies. We then give guidelines for in vivo acquisition protocols, including decisions on hardware, animal preparation, imaging sequences and data processing, including pre-processing, model-fitting, and tractography. Finally, we provide an online resource which lists publicly available preclinical dMRI datasets and software packages, to promote responsible and reproducible research. An overarching goal herein is to enhance the rigor and reproducibility of small animal dMRI acquisitions and analyses, and thereby advance biomedical knowledge.
Intervertebral Disc Labeling With Learning Shape Information, A Look Once Approach
Reza Azad
Moein Heidari
Ehsan Adeli
Dorit Merhof
Accurate and automatic segmentation of intervertebral discs from medical images is a critical task for the assessment of spine-related disea… (see more)ses such as osteoporosis, vertebral fractures, and intervertebral disc herniation. To date, various approaches have been developed in the literature which routinely relies on detecting the discs as the primary step. A disadvantage of many cohort studies is that the localization algorithm also yields false-positive detections. In this study, we aim to alleviate this problem by proposing a novel U-Net-based structure to predict a set of candidates for intervertebral disc locations. In our design, we integrate the image shape information (image gradients) to encourage the model to learn rich and generic geometrical information. This additional signal guides the model to selectively emphasize the contextual representation and suppress the less discriminative features. On the post-processing side, to further decrease the false positive rate, we propose a permutation invariant 'look once' model, which accelerates the candidate recovery procedure. In comparison with previous studies, our proposed approach does not need to perform the selection in an iterative fashion. The proposed method was evaluated on the spine generic public multi-center dataset and demonstrated superior performance compared to previous work. We have provided the implementation code in https://github.com/rezazad68/intervertebral-lookonce
Advanced MRI Scan Acquisition Metrics Improve Baseline Disease Severity Predictions Compared to Traditional Community MRI Scan Metrics
Abdul Al-Shawwa
David W. Cadotte
David Anderson
Nathan Evaniew
Nathan
B. Jacobs
Degenerative Cervical Myelopathy (DCM) is the functional derangement of the spinal cord and acts as one of the most common atraumatic spinal… (see more) cord injuries. Magnetic resonance imaging (MRI) are key in confirming the diagnosis of DCM in patients, though the utilization of higher fidelity magnetic resonance imaging scans and their integration into machine learning models remains largely unexplored. This study looks at the predictive ability of common community MRI scans in comparison to high fidelity scans in disease diagnosis. We hypothesize that the utilization of higher fidelity "advanced" MRI scans will increase the effectiveness of machine learning models predicting DCM severity. Through the utilization of Random Forest Classifiers, we have been able to predict disease severity with 41.8% accuracy in current community MRI scans and 63.9% in the advanced MRI scans. Furthermore, across the different predictive model variations tested, the advanced MRI scans consistently produced higher prediction accuracies compared to the community MRI counterparts. These results support our hypothesis and indicate that machine learning models have the potential to predict disease severity. However, neither performed well enough to be considered for use in clinical practice, indicating that the utilization of more sophisticated machine models may be required for these purposes.
Relationship Between Arterial Stiffness Index, Pulse Pressure, and Magnetic Resonance Imaging Markers of White Matter Integrity: A UK Biobank Study
Atef Badji
Hélène Girouard
NeoRS: A Neonatal Resting State fMRI Data Preprocessing Pipeline
Vicente Enguix
Jeanette Kenley
David Luck
Gregory Anton Lodygensky
Resting state functional MRI (rsfMRI) has been shown to be a promising tool to study intrinsic brain functional connectivity and assess its … (see more)integrity in cerebral development. In neonates, where functional MRI is limited to very few paradigms, rsfMRI was shown to be a relevant tool to explore regional interactions of brain networks. However, to identify the resting state networks, data needs to be carefully processed to reduce artifacts compromising the interpretation of results. Because of the non-collaborative nature of the neonates, the differences in brain size and the reversed contrast compared to adults due to myelination, neonates can’t be processed with the existing adult pipelines, as they are not adapted. Therefore, we developed NeoRS, a rsfMRI pipeline for neonates. The pipeline relies on popular neuroimaging tools (FSL, AFNI, and SPM) and is optimized for the neonatal brain. The main processing steps include image registration to an atlas, skull stripping, tissue segmentation, slice timing and head motion correction and regression of confounds which compromise functional data interpretation. To address the specificity of neonatal brain imaging, particular attention was given to registration including neonatal atlas type and parameters, such as brain size variations, and contrast differences compared to adults. Furthermore, head motion was scrutinized, and motion management optimized, as it is a major issue when processing neonatal rsfMRI data. The pipeline includes quality control using visual assessment checkpoints. To assess the effectiveness of NeoRS processing steps we used the neonatal data from the Baby Connectome Project dataset including a total of 10 neonates. NeoRS was designed to work on both multi-band and single-band acquisitions and is applicable on smaller datasets. NeoRS also includes popular functional connectivity analysis features such as seed-to-seed or seed-to-voxel correlations. Language, default mode, dorsal attention, visual, ventral attention, motor and fronto-parietal networks were evaluated. Topology found the different analyzed networks were in agreement with previously published studies in the neonate. NeoRS is coded in Matlab and allows parallel computing to reduce computational times; it is open-source and available on GitHub (https://github.com/venguix/NeoRS). NeoRS allows robust image processing of the neonatal rsfMRI data that can be readily customized to different datasets.
Vendor-neutral sequences and fully transparent workflows improve inter-vendor reproducibility of quantitative MRI
Agah Karakuzu
Labonny Biswas
Nikola Stikov
Purpose We developed an end-to-end workflow that starts with a vendor-neutral acquisition and tested the hypothesis that vendor-neutral sequ… (see more)ences decrease inter-vendor variability of T1, MTR and MTsat measurements. Methods We developed and deployed a vendor-neutral 3D spoiled gradient-echo (SPGR) sequence on three clinical scanners by two MRI vendors. We then acquired T1 maps on the ISMRM-NIST system phantom, as well as T1, MTR and MTsat maps in three healthy participants. We performed hierarchical shift function analysis in vivo to characterize the differences between scanners when the vendor-neutral sequence is used instead of commercial vendor implementations. Inter-vendor deviations were compared for statistical significance to test the hypothesis. Results In the phantom, the vendor-neutral sequence reduced inter-vendor differences from 8 - 19.4% to 0.2 - 5% with an overall accuracy improvement, reducing ground truth T1 deviations from 7 - 11% to 0.2 - 4%. In vivo we found that the variability between vendors is significantly reduced (p = 0.015) for all maps (T1, MTR and MTsat) using the vendor-neutral sequence. Conclusion We conclude that vendor-neutral workflows are feasible and compatible with clinical MRI scanners. The significant reduction of inter-vendor variability using vendor-neutral sequences has important implications for qMRI research and for the reliability of multicenter clinical trials.