Portrait of David Scott Krueger

David Scott Krueger

Core Academic Member
Canada CIFAR AI Chair
Assistant professor, Université de Montréal, Department of Computer Science and Operations Research (DIRO)
Alumni
Research Topics
Deep Learning
Representation Learning

Biography

David Krueger is an Assistant Professor in Robust, Reasoning and Responsible AI in the Department of Computer Science and Operations Research (DIRO) at University of Montreal, and a Core Academic Member at Mila - Quebec Artificial Intelligence Institute, UC Berkeley's Center for Human-Compatible AI (CHAI), and the Center for the Study of Existential Risk (CSER). His work focuses on reducing the risk of human extinction from artificial intelligence (AI x-risk) through technical research as well as education, outreach, governance and advocacy.

His research spans many areas of Deep Learning, AI Alignment, AI Safety and AI Ethics, including alignment failure modes, algorithmic manipulation, interpretability, robustness, and understanding how AI systems learn and generalize. He has been featured in media outlets including ITV's Good Morning Britain, Al Jazeera's Inside Story, France 24, New Scientist and the Associated Press.

David completed his graduate studies at the University of Montreal and Mila - Quebec Artificial Intelligence Institute, working with Yoshua Bengio, Roland Memisevic, and Aaron Courville.

Publications

Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims
Miles Brundage
Shahar Avin
Haydn Belfield
Gretchen Krueger
Gillian K. Hadfield
Heidy Khlaaf
Jingying Yang
H. Toner
Ruth Catherine Fong
Pang Wei Koh
Sara Hooker
Jade Leung
Andrew John Trask
Emma Bluemke
Jonathan Lebensbold
Cullen C. O'keefe
Mark Koren
Th'eo Ryffel … (see 39 more)
JB Rubinovitz
Tamay Besiroglu
Federica Carugati
Jack Clark
Peter Eckersley
Sarah de Haas
Maritza L. Johnson
Ben Laurie
Alex Ingerman
Igor Krawczuk
Amanda Askell
Rosario Cammarota
A. Lohn
Charlotte Stix
Peter Mark Henderson
Logan Graham
Carina E. A. Prunkl
Bianca Martin
Elizabeth Seger
Noa Zilberman
Sean O hEigeartaigh
Frens Kroeger
Girish Sastry
R. Kagan
Adrian Weller
Brian Shek-kam Tse
Elizabeth Barnes
Allan Dafoe
Paul D. Scharre
Ariel Herbert-Voss
Martijn Rasser
Carrick Flynn
Thomas Krendl Gilbert
Lisa Dyer
Saif M. Khan
Markus Anderljung
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Generalizing outside of the training distribution is an open challenge for current machine learning systems. A weak form of out-of-distribut… (see more)ion (OoD) generalization is the ability to successfully interpolate between multiple observed distributions. One way to achieve this is through robust optimization, which seeks to minimize the worst-case risk over convex combinations of the training distributions. However, a much stronger form of OoD generalization is the ability of models to extrapolate beyond the distributions observed during training. In pursuit of strong OoD generalization, we introduce the principle of Risk Extrapolation (REx). REx can be viewed as encouraging robustness over affine combinations of training risks, by encouraging strict equality between training risks. We show conceptually how this principle enables extrapolation, and demonstrate the effectiveness and scalability of instantiations of REx on various OoD generalization tasks. Our code can be found at this https URL.
Neural Autoregressive Flows
Normalizing flows and autoregressive models have been successfully combined to produce state-of-the-art results in density estimation, via M… (see more)asked Autoregressive Flows (MAF), and to accelerate state-of-the-art WaveNet-based speech synthesis to 20x faster than real-time, via Inverse Autoregressive Flows (IAF). We unify and generalize these approaches, replacing the (conditionally) affine univariate transformations of MAF/IAF with a more general class of invertible univariate transformations expressed as monotonic neural networks. We demonstrate that the proposed neural autoregressive flows (NAF) are universal approximators for continuous probability distributions, and their greater expressivity allows them to better capture multimodal target distributions. Experimentally, NAF yields state-of-the-art performance on a suite of density estimation tasks and outperforms IAF in variational autoencoders trained on binarized MNIST.
Neural Autoregressive Flows
Normalizing flows and autoregressive models have been successfully combined to produce state-of-the-art results in density estimation, via M… (see more)asked Autoregressive Flows (MAF), and to accelerate state-of-the-art WaveNet-based speech synthesis to 20x faster than real-time, via Inverse Autoregressive Flows (IAF). We unify and generalize these approaches, replacing the (conditionally) affine univariate transformations of MAF/IAF with a more general class of invertible univariate transformations expressed as monotonic neural networks. We demonstrate that the proposed neural autoregressive flows (NAF) are universal approximators for continuous probability distributions, and their greater expressivity allows them to better capture multimodal target distributions. Experimentally, NAF yields state-of-the-art performance on a suite of density estimation tasks and outperforms IAF in variational autoencoders trained on binarized MNIST.
Bayesian Hypernetworks
We propose Bayesian hypernetworks: a framework for approximate Bayesian inference in neural networks. A Bayesian hypernetwork, h, is a neura… (see more)l network which learns to transform a simple noise distribution, p(e) = N(0,I), to a distribution q(t) := q(h(e)) over the parameters t of another neural network (the ``primary network). We train q with variational inference, using an invertible h to enable efficient estimation of the variational lower bound on the posterior p(t | D) via sampling. In contrast to most methods for Bayesian deep learning, Bayesian hypernets can represent a complex multimodal approximate posterior with correlations between parameters, while enabling cheap iid sampling of q(t). In practice, Bayesian hypernets provide a better defense against adversarial examples than dropout, and also exhibit competitive performance on a suite of tasks which evaluate model uncertainty, including regularization, active learning, and anomaly detection.
Bayesian Hypernetworks
Bayesian Hypernetworks
Bayesian Hypernetworks
We propose Bayesian hypernetworks: a framework for approximate Bayesian inference in neural networks. A Bayesian hypernetwork, h, is a neura… (see more)l network which learns to transform a simple noise distribution, p(e) = N(0,I), to a distribution q(t) := q(h(e)) over the parameters t of another neural network (the ``primary network). We train q with variational inference, using an invertible h to enable efficient estimation of the variational lower bound on the posterior p(t | D) via sampling. In contrast to most methods for Bayesian deep learning, Bayesian hypernets can represent a complex multimodal approximate posterior with correlations between parameters, while enabling cheap iid sampling of q(t). In practice, Bayesian hypernets provide a better defense against adversarial examples than dropout, and also exhibit competitive performance on a suite of tasks which evaluate model uncertainty, including regularization, active learning, and anomaly detection.
Bayesian Hypernetworks
A Closer Look at Memorization in Deep Networks
We examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness. While dee… (see more)p networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first. In our experiments, we expose qualitative differences in gradient-based optimization of deep neural networks (DNNs) on noise vs. real data. We also demonstrate that for appropriately tuned explicit regularization (e.g., dropout) we can degrade DNN training performance on noise datasets without compromising generalization on real data. Our analysis suggests that the notions of effective capacity which are dataset independent are unlikely to explain the generalization performance of deep networks when trained with gradient based methods because training data itself plays an important role in determining the degree of memorization.
A Closer Look at Memorization in Deep Networks
We examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness. While dee… (see more)p networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first. In our experiments, we expose qualitative differences in gradient-based optimization of deep neural networks (DNNs) on noise vs. real data. We also demonstrate that for appropriately tuned explicit regularization (e.g., dropout) we can degrade DNN training performance on noise datasets without compromising generalization on real data. Our analysis suggests that the notions of effective capacity which are dataset independent are unlikely to explain the generalization performance of deep networks when trained with gradient based methods because training data itself plays an important role in determining the degree of memorization.
Deep Nets Don't Learn via Memorization
We use empirical methods to argue that deep neural networks (DNNs) do not achieve their performance by memorizing training data in spite of … (see more)overlyexpressive model architectures. Instead, they learn a simple available hypothesis that fits the finite data samples. In support of this view, we establish that there are qualitative differences when learning noise vs. natural datasets, showing: (1) more capacity is needed to fit noise, (2) time to convergence is longer for random labels, but shorter for random inputs, and (3) that DNNs trained on real data examples learn simpler functions than when trained with noise data, as measured by the sharpness of the loss function at convergence. Finally, we demonstrate that for appropriately tuned explicit regularization, e.g. dropout, we can degrade DNN training performance on noise datasets without compromising generalization on real data.