Portrait of Alexander Tong is unavailable

Alexander Tong

Alumni

Publications

Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport
Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have thus far been held back by limitations i… (see more)n their simulation-based maximum likelihood training. In this paper, we introduce a new technique called conditional flow matching (CFM), a simulation-free training objective for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, our CFM objec-tive does not require the source distribution to be Gaussian or require evaluation of its density. Based on this new objective, we also introduce optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks such as inferring single cell dynamics, unsupervised image translation, and Schr ¨ odinger bridge inference. Code is available at https://github.com/atong01/ conditional-flow-matching .
Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport
DynGFN: Bayesian Dynamic Causal Discovery using Generative Flow Networks
Jason Hartford
Leo Jingyu Lee
Bo Wang
Learning the causal structure of observable variables is a central focus for scientific discovery. Bayesian causal discovery methods tackle… (see more) this problem by learning a posterior over the set of admissible graphs given our priors and observations. Existing methods primarily consider observations from static systems and assume the underlying causal structure takes the form of a directed acyclic graph (DAG). In settings with dynamic feedback mechanisms that regulate the trajectories of individual variables, this acyclicity assumption fails unless we account for time. We focus on learning Bayesian posteriors over cyclic graphs and treat causal discovery as a problem of sparse identification of a dynamical sys-tem. This imposes a natural temporal causal order between variables and captures cyclic feedback loops through time. Under this lens, we propose a new framework for Bayesian causal discovery for dynamical systems and present a novel generative flow network architecture (DynGFN) tailored for this task. Our results indicate that DynGFN learns posteriors that better encapsulate the distributions over admissible cyclic causal structures compared to counterpart state-of-the-art approaches.
GEODESIC SINKHORN FOR FAST AND ACCURATE OPTIMAL TRANSPORT ON MANIFOLDS
María Ramos Zapatero
Christopher J. Tape
Efficient computation of optimal transport distance between distributions is of growing importance in data science. Sinkhorn-based methods a… (see more)re currently the state-of-the-art for such computations, but require O(n2) computations. In addition, Sinkhorn-based methods commonly use an Euclidean ground distance between datapoints. However, with the prevalence of manifold structured scientific data, it is often desirable to consider geodesic ground distance. Here, we tackle both issues by proposing Geodesic Sinkhorn—based on diffusing a heat kernel on a manifold graph. Notably, Geodesic Sinkhorn requires only O(n log n) computation, as we approximate the heat kernel with Chebyshev polynomials based on the sparse graph Laplacian. We apply our method to the computation of barycenters of several distributions of high dimensional single cell data from patient samples undergoing chemotherapy. In particular, we define the barycentric distance as the distance between two such barycenters. Using this definition, we identify an optimal transport distance and path associated with the effect of treatment on cellular data.
A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction
Edward De Brouwer
Yanlei Zhang
Ian Adelstein
Bayesian Dynamic Causal Discovery
Learning the causal structure of observable variables is a central focus for scientific discovery. Bayesian causal discovery methods tackle … (see more)this problem by learning a posterior over the set of admissible graphs that are equally likely given our priors and observations. Existing methods primarily consider observations from static systems and assume the underlying causal structure takes the form of a directed acyclic graph (DAG). In settings with dynamic feedback mechanisms that regulate the trajectories of individual variables, this acyclicity assumption fails unless we account for time. We treat causal discovery in the unrolled causal graph as a problem of sparse identification of a dynamical system. This imposes a natural temporal causal order between variables and captures cyclic feedback loops through time. Under this lens, we propose a new framework for Bayesian causal discovery for dynamical systems and present a novel generative flow network architecture (Dyn-GFN) tailored for this task. Dyn-GFN imposes an edge-wise sparse prior to sequentially build a k -sparse causal graph. Through evaluation on temporal data, our results show that the posterior learned with Dyn-GFN yields improved Bayes coverage of admissible causal structures relative to state of the art Bayesian causal discovery methods.
Multiscale PHATE identifies multimodal signatures of COVID-19
Manik Kuchroo
Je-chun Huang
Patrick Wong
Jean-Christophe Grenier
Dennis Shung
Carolina Lucas
Jon Klein
Daniel B. Burkhardt
Scott Gigante
Abhinav Godavarthi
Bastian Rieck
Benjamin Israelow
Michael Simonov
Tianyang Mao
Ji Eun Oh
Julio Silva
Takehiro Takahashi
Camila D. Odio
Arnau Casanovas-Massana … (see 10 more)
John Fournier
Shelli Farhadian
Charles S. Dela Cruz
Albert I. Ko
Matthew Hirn
F. Perry Wilson
Akiko Iwasaki
Multiscale PHATE identifies multimodal signatures of COVID-19
Manik Kuchroo
Je-chun Huang
Patrick W. Wong
Jean-Christophe Grenier
Dennis L. Shung
C. Lucas
J. Klein
Daniel B. Burkhardt
Scott Gigante
Abhinav Godavarthi
Bastian Rieck
Benjamin Israelow
Michael Simonov
Tianyang Mao
Ji Eun Oh
Julio Silva
Takehiro Takahashi
C. Odio
Arnau Casanovas‐massana … (see 10 more)
John Byrne Fournier
Shelli F. Farhadian
C. D. Dela Cruz
A. Ko
Matthew Hirn
F. Wilson
Akiko Iwasaki
Fixing Bias in Reconstruction-based Anomaly Detection with Lipschitz Discriminators
Anomaly detection is of great interest in fields where abnormalities need to be identified and corrected (e.g., medicine and finance). Deep … (see more)learning methods for this task often rely on autoencoder reconstruction error, sometimes in conjunction with other penalties. We show that this approach exhibits intrinsic biases that lead to undesirable results. Reconstruction-based methods can sometimes show low error on simple-to-reconstruct points that are not part of the training data, for example the all black image. Instead, we introduce a new unsupervised Lipschitz anomaly discriminator (LAD) that does not suffer from these biases. Our anomaly discriminator is trained, similar to the discriminator of a GAN, to detect the difference between the training data and corruptions of the training data. We show that this procedure successfully detects unseen anomalies with guarantees on those that have a certain Wasserstein distance from the data or corrupted training set. These additions allow us to show improved performance on MNIST, CIFAR10, and health record data. Further, LAD does not require decoding back to the original data space, which makes anomaly detection possible in domains where it is difficult to define a decoder, such as in irregular graph structured data. Empirically, we show this framework leads to improved performance on image, health record, and graph data.
Embedding Signals on Knowledge Graphs with Unbalanced Diffusion Earth Mover's Distance
In modern relational machine learning it is common to encounter large graphs that arise via interactions or similarities between observation… (see more)s in many domains. Further
Embedding Signals on Knowledge Graphs with Unbalanced Diffusion Earth Mover's Distance
In modern relational machine learning it is common to encounter large graphs that arise via interactions or similarities between observation… (see more)s in many domains. Further
Multiscale PHATE Exploration of SARS-CoV-2 Data Reveals Multimodal Signatures of Disease
Manik Kuchroo
Patrick Wong
Jean-Christophe Grenier
Dennis Shung
Carolina Lucas
Jon Klein
Daniel B. Burkhardt
Scott Gigante
Abhinav Godavarthi
Benjamin Israelow
Tianyang Mao
Ji Eun Oh
Julio Silva
Takehiro Takahashi
Camila D. Odio
Arnau Casanovas-Massana
John Fournier
Shelli Farhadian … (see 7 more)
Charles S. Dela Cruz
Albert I. Ko
F. Perry Wilson
Akiko Iwasaki