Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Adrien Ali Taiga
Alumni
Publications
A Geometric Perspective on Optimal Representations for Reinforcement Learning
We propose a new perspective on representation learning in reinforcement learning based on geometric properties of the space of value functi… (see more)ons. We leverage this perspective to provide formal evidence regarding the usefulness of value functions as auxiliary tasks. Our formulation considers adapting the representation to minimize the (linear) approximation of the value function of all stationary policies for a given environment. We show that this optimization reduces to making accurate predictions regarding a special class of value functions which we call adversarial value functions (AVFs). We demonstrate that using value functions as auxiliary tasks corresponds to an expected-error relaxation of our formulation, with AVFs a natural candidate, and identify a close relationship with proto-value functions (Mahadevan, 2005). We highlight characteristics of AVFs and their usefulness as auxiliary tasks in a series of experiments on the four-room domain.
We propose a new perspective on representation learning in reinforcement learning based on geometric properties of the space of value functi… (see more)ons. We leverage this perspective to provide formal evidence regarding the usefulness of value functions as auxiliary tasks. Our formulation considers adapting the representation to minimize the (linear) approximation of the value function of all stationary policies for a given environment. We show that this optimization reduces to making accurate predictions regarding a special class of value functions which we call adversarial value functions (AVFs). We demonstrate that using value functions as auxiliary tasks corresponds to an expected-error relaxation of our formulation, with AVFs a natural candidate, and identify a close relationship with proto-value functions (Mahadevan, 2005). We highlight characteristics of AVFs and their usefulness as auxiliary tasks in a series of experiments on the four-room domain.
Despite the recent successes of deep reinforcement learning, teaching complex motor skills to a physical robot remains a hard problem. While… (see more) learning directly on a real system is usually impractical, doing so in simulation has proven to be fast and safe. Nevertheless, because of the "reality gap," policies trained in simulation often perform poorly when deployed on a real system. In this work, we introduce a method for training a recurrent neural network on the differences between simulated and real robot trajectories and then using this model to augment the simulator. This Neural-Augmented Simulation (NAS) can be used to learn control policies that transfer significantly better to real environments than policies learned on existing simulators. We demonstrate the potential of our approach through a set of experiments on the Mujoco simulator with added backlash and the Poppy Ergo Jr robot. NAS allows us to learn policies that are competitive with ones that would have been learned directly on the real robot.
2018-10-23
Proceedings of The 2nd Conference on Robot Learning (published)
Although exploration in reinforcement learning is well understood from a theoretical point of view, provably correct methods remain impracti… (see more)cal. In this paper we study the interplay between exploration and approximation, what we call approximate exploration. Our main goal is to further our theoretical understanding of pseudo-count based exploration bonuses (Bellemare et al., 2016), a practical exploration scheme based on density modelling. As a warm-up, we quantify the performance of an exploration algorithm, MBIE-EB (Strehl and Littman, 2008), when explicitly combined with state aggregation. This allows us to confirm that, as might be expected, approximation allows the agent to trade off between learning speed and quality of the learned policy. Next, we show how a given density model can be related to an abstraction and that the corresponding pseudo-count bonus can act as a substitute in MBIE-EB combined with this abstraction, but may lead to either under- or over-exploration. Then, we show that a given density model also defines an implicit abstraction, and find a surprising mismatch between pseudo-counts derived either implicitly or explicitly. Finally we derive a new pseudo-count bonus alleviating this issue.
Natural image modeling is a landmark challenge of unsupervised learning. Variational Autoencoders (VAEs) learn a useful latent representatio… (see more)n and model global structure well but have difficulty capturing small details. PixelCNN models details very well, but lacks a latent code and is difficult to scale for capturing large structures. We present PixelVAE, a VAE model with an autoregressive decoder based on PixelCNN. Our model requires very few expensive autoregressive layers compared to PixelCNN and learns latent codes that are more compressed than a standard VAE while still capturing most non-trivial structure. Finally, we extend our model to a hierarchy of latent variables at different scales. Our model achieves state-of-the-art performance on binarized MNIST, competitive performance on 64 × 64 ImageNet, and high-quality samples on the LSUN bedrooms dataset.