Portrait de Narges Armanfard

Narges Armanfard

Membre académique associé
Professeure adjointe, McGill University, Département de génie électrique et informatique

Biographie

Narges Armanfard (Ph. D., ing.) est la fondatrice et la chercheuse principale du laboratoire iSMART. Elle occupe le poste de professeure adjointe menant à la permanence au Département de génie électrique et informatique de l'Université McGill ainsi qu'à Mila – Institut québécois d'intelligence artificielle. Elle est également affiliée au Centre sur les machines intelligentes de McGill (CIM), à l'Initiative de McGill en médecine computationnelle (MiCM) et à l'Institut de génie aérospatial de McGill (MIAE). Ses recherches portent sur le développement d'algorithmes novateurs pour divers domaines tels que l'analyse de données de séries temporelles, la vision par ordinateur, l'apprentissage par renforcement et l'apprentissage par représentation pour des tâches telles que le regroupement de données, la classification et la détection d'anomalies. Ses contributions au domaine de l'IA ont été reconnues par de nombreux prix, décernés notamment par le Conseil de recherches en sciences naturelles et en génie du Canada, AgeWell, Vanier-Banting, les Fonds de recherche du Québec, ainsi que l'Université McMaster, l'Université McGill, l'Université de Toronto, les Instituts de recherche en santé du Canada et Scale AI.

Étudiants actuels

Maîtrise recherche - McGill University
Doctorat - McGill University
Maîtrise recherche - McGill University
Maîtrise recherche - McGill University
Maîtrise recherche - McGill University
Co-superviseur⋅e :

Publications

Graph-based Time-Series Anomaly Detection: A Survey
Thi Kieu Khanh Ho
Ali Karami
With the recent advances in technology, a wide range of systems continue to collect a large amount of data over time and thus generate time … (voir plus)series. Time-Series Anomaly Detection (TSAD) is an important task in various time-series applications such as e-commerce, cybersecurity, vehicle maintenance, and healthcare monitoring. However, this task is very challenging as it requires considering both the intra-variable dependency and the inter-variable dependency, where a variable can be defined as an observation in time series data. Recent graph-based approaches have made impressive progress in tackling the challenges of this field. In this survey, we conduct a comprehensive and up-to-date review of Graph-based TSAD (G-TSAD). First, we explore the significant potential of graph representation learning for time-series data. Then, we review state-of-the-art graph anomaly detection techniques in the context of time series and discuss their strengths and drawbacks. Finally, we discuss the technical challenges and potential future directions for possible improvements in this research field.
DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly Detection
Hadi Hojjati
Semi-supervised anomaly detection aims to detect anomalies from normal samples using a model that is trained on normal data. With recent adv… (voir plus)ancements in deep learning, researchers have designed efficient deep anomaly detection methods. Existing works commonly use neural networks to map the data into a more informative representation and then apply an anomaly detection algorithm. In this paper, we propose a method, DASVDD, that jointly learns the parameters of an autoencoder while minimizing the volume of an enclosing hyper-sphere on its latent representation. We propose an anomaly score which is a combination of autoencoder's reconstruction error and the distance from the center of the enclosing hypersphere in the latent representation. Minimizing this anomaly score aids us in learning the underlying distribution of the normal class during training. Including the reconstruction error in the anomaly score ensures that DASVDD does not suffer from the common hypersphere collapse issue since the DASVDD model does not converge to the trivial solution of mapping all inputs to a constant point in the latent representation. Experimental evaluations on several benchmark datasets show that the proposed method outperforms the commonly used state-of-the-art anomaly detection algorithms while maintaining robust performance across different anomaly classes.
Deep Multirepresentation Learning for Data Clustering.
Mohammadreza Sadeghi
Deep clustering incorporates embedding into clustering in order to find a lower-dimensional space suitable for clustering tasks. Conventiona… (voir plus)l deep clustering methods aim to obtain a single global embedding subspace (aka latent space) for all the data clusters. In contrast, in this article, we propose a deep multirepresentation learning (DML) framework for data clustering whereby each difficult-to-cluster data group is associated with its own distinct optimized latent space and all the easy-to-cluster data groups are associated with a general common latent space. Autoencoders (AEs) are employed for generating cluster-specific and general latent spaces. To specialize each AE in its associated data cluster(s), we propose a novel and effective loss function which consists of weighted reconstruction and clustering losses of the data points, where higher weights are assigned to the samples more probable to belong to the corresponding cluster(s). Experimental results on benchmark datasets demonstrate that the proposed DML framework and loss function outperform state-of-the-art clustering approaches. In addition, the results show that the DML method significantly outperforms the SOTA on imbalanced datasets as a result of assigning an individual latent space to the difficult clusters.
How can intelligent systems revolutionise healthcare?
Multivariate Time-Series Anomaly Detection with Temporal Self-supervision and Graphs: Application to Vehicle Failure Prediction
Hadi Hojjati
Mohammadreza Sadeghi
Multistep networks for roll force prediction in hot strip rolling mill
Shuh-Rong Shen
Denzel Guye
Xiaoping Ma
S. Yue
Multistep networks for roll force prediction in hot strip rolling mill
Shuh-Rong Shen
Denzel Guye
Xiaoping Ma
S. Yue