Portrait de Guillaume Rabusseau

Guillaume Rabusseau

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, Université de Montréal, Département d'informatique et de recherche opérationnelle

Biographie

Depuis septembre 2018, je suis professeur adjoint à Mila – Institut québécois d’intelligence artificielle et au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal (UdeM). Je suis titulaire d’une chaire de recherche en IA Canada-CIFAR depuis mars 2019. Avant de me joindre à l’UdeM, j’ai été chercheur postdoctoral au laboratoire de raisonnement et d'apprentissage de l'Université McGill, où j'ai travaillé avec Prakash Panangaden, Joelle Pineau et Doina Precup.

J'ai obtenu mon doctorat en 2016 à l’Université d’Aix-Marseille (AMU), où j'ai travaillé dans l'équipe Qarma (apprentissage automatique et multimédia), sous la supervision de François Denis et Hachem Kadri. Auparavant, j'ai obtenu une maîtrise en informatique fondamentale de l'AMU et une licence en informatique de la même université en formation à distance.

Je m'intéresse aux méthodes de tenseurs pour l'apprentissage automatique et à la conception d'algorithmes d'apprentissage pour les données structurées par l’utilisation de l'algèbre linéaire et multilinéaire (par exemple, les méthodes spectrales).

Étudiants actuels

Doctorat - Université de Montréal
Doctorat - Université de Montréal
Co-superviseur⋅e :
Collaborateur·rice alumni - University of Mannheim
Co-superviseur⋅e :
Postdoctorat - Université de Montréal
Doctorat - Université de Montréal
Doctorat - Université de Montréal
Maîtrise recherche - Université de Montréal
Collaborateur·rice de recherche
Co-superviseur⋅e :
Doctorat - McGill University
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill University
Superviseur⋅e principal⋅e :

Publications

Nonlinear Weighted Finite Automata
Weighted finite automata (WFA) can expressively model functions defined over strings but are inherently linear models. Given the recent succ… (voir plus)esses of nonlinear models in machine learning, it is natural to wonder whether extending WFA to the nonlinear setting would be beneficial. In this paper, we propose a novel model of neural network based nonlinear WFA model (NL-WFA) along with a learning algorithm. Our learning algorithm is inspired by the spectral learning algorithm for WFA and relies on a nonlinear decomposition of the so-called Hankel matrix, by means of an auto-encoder network. The expressive power of NL-WFA and the proposed learning algorithm are assessed on both synthetic and real world data, showing that NL-WFA can lead to smaller model sizes and infer complex grammatical structures from data.
Optimizing Home Energy Management and Electric Vehicle Charging with Reinforcement Learning
Di Wu
Vincent Francois-Lavet
Benoit Boulet
Smart grids are advancing the management efficiency and security of power grids with the integration of energy storage, distributed controll… (voir plus)ers, and advanced meters. In particular, with the increasing prevalence of residential automation devices and distributed renewable energy generation, residential energy management is now drawing more attention. Meanwhile, the increasing adoption of electric vehicle (EV) brings more challenges and opportunities for smart residential energy management. This paper formalizes energy management for the residential home with EV charging as a Markov Decision Process and proposes reinforcement learning (RL) based control algorithms to address it. The objective of the proposed algorithms is to minimize the long-term operating cost. We further use a recurrent neural network (RNN) to model the electricity demand as a preprocessing step. Both the RNN prediction and latent representations are used as additional state features for the RL based control algorithms. Experiments on real-world data show that the proposed algorithms can significantly reduce the operating cost and peak power consumption compared to baseline control algorithms.
Tensor Regression Networks with various Low-Rank Tensor Approximations
Tensor regression networks achieve high compression rate of neural networks while having slight impact on performances. They do so by imposi… (voir plus)ng low tensor rank structure on the weight matrices of fully connected layers. In recent years, tensor regression networks have been investigated from the perspective of their compressive power, however, the regularization effect of enforcing low-rank tensor structure has not been investigated enough. We study tensor regression networks using various low-rank tensor approximations, aiming to compare the compressive and regularization power of different low-rank constraints. We evaluate the compressive and regularization performances of the proposed model with both deep and shallow convolutional neural networks. The outcome of our experiment suggests the superiority of Global Average Pooling Layer over Tensor Regression Layer when applied to deep convolutional neural network with CIFAR-10 dataset. On the contrary, shallow convolutional neural networks with tensor regression layer and dropout achieved lower test error than both Global Average Pooling and fully-connected layer with dropout function when trained with a small number of samples.
Neural Network Based Nonlinear Weighted Finite Automata
Weighted finite automata (WFA) can expressively model functions defined over strings but are inherently linear models. Given the recent succ… (voir plus)esses of nonlinear models in machine learning, it is natural to wonder whether ex-tending WFA to the nonlinear setting would be beneficial. In this paper, we propose a novel model of neural network based nonlinearWFA model (NL-WFA) along with a learning algorithm. Our learning algorithm is inspired by the spectral learning algorithm for WFAand relies on a nonlinear decomposition of the so-called Hankel matrix, by means of an auto-encoder network. The expressive power of NL-WFA and the proposed learning algorithm are assessed on both synthetic and real-world data, showing that NL-WFA can lead to smaller model sizes and infer complex grammatical structures from data.
Hierarchical Methods of Moments
Matteo Ruffini
Borja Balle
Spectral methods of moments provide a powerful tool for learning the parameters of latent variable models. Despite their theoretical appeal,… (voir plus) the applicability of these methods to real data is still limited due to a lack of robustness to model misspecification. In this paper we present a hierarchical approach to methods of moments to circumvent such limitations. Our method is based on replacing the tensor decomposition step used in previous algorithms with approximate joint diagonalization. Experiments on topic modeling show that our method outperforms previous tensor decomposition methods in terms of speed and model quality.
Multitask Spectral Learning of Weighted Automata
We consider the problem of estimating multiple related functions computed by weighted automata~(WFA). We first present a natural notion of r… (voir plus)elatedness between WFAs by considering to which extent several WFAs can share a common underlying representation. We then introduce the model of vector-valued WFA which conveniently helps us formalize this notion of relatedness. Finally, we propose a spectral learning algorithm for vector-valued WFAs to tackle the multitask learning problem. By jointly learning multiple tasks in the form of a vector-valued WFA, our algorithm enforces the discovery of a representation space shared between tasks. The benefits of the proposed multitask approach are theoretically motivated and showcased through experiments on both synthetic and real world datasets.