Portrait de Aditya Mahajan

Aditya Mahajan

Membre académique associé
Professeur agrégé, McGill University, Département de génie électrique et informatique

Biographie

Aditya Mahajan est professeur de génie électrique et informatique à l'Université McGill. Il est membre du Centre sur les machines intelligentes (CIM) de McGill, de Mila – Institut québécois d’intelligence artificielle, du Laboratoire international des systèmes d'apprentissage (ILLS) et du Groupe d'études et de recherche en analyse des décisions (GERAD). Il est titulaire d'une licence en génie électrique de l'Indian Institute of Technology de Kanpur (Inde), ainsi que d'une maîtrise et d'un doctorat en génie électrique et en informatique de l'Université du Michigan à Ann Arbor (États-Unis).

Aditya Mahajan est membre senior de l'Institute of Electrical and Electronics Engineers (IEEE) et membre de Professional Engineers Ontario. Il est actuellement rédacteur en chef adjoint des IEEE Transactions on Automatic Control, des IEEE Control Systems Letters et de Mathematics of Control, Signals, and Systems (Springer). Il a été rédacteur associé au comité de rédaction de la conférence de l'IEEE Control Systems Society de 2014 à 2017.

Il a reçu le prix George Axelby 2015 récompensant un article exceptionnel, un supplément d’accélération à la découverte du Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG) en 2016, le prix CDC du meilleur article étudiant 2014 (en tant que superviseur) et le prix NecSys du meilleur article étudiant 2016 (en tant que superviseur). Ses principaux domaines de recherche sont le contrôle stochastique et l'apprentissage par renforcement.

Étudiants actuels

Maîtrise recherche - McGill University
Maîtrise recherche - McGill University
Doctorat - McGill University
Maîtrise recherche - McGill University
Doctorat - McGill University
Doctorat - McGill University

Publications

On learning Whittle index policy for restless bandits with scalable regret
Nima Akbarzadeh
Reinforcement learning is an attractive approach to learn good resource allocation and scheduling policies based on data when the system mod… (voir plus)el is unknown. However, the cumulative regret of most RL algorithms scales as
Approximate information state for approximate planning and reinforcement learning in partially observed systems
Jayakumar Subramanian
Amit Sinha
Raihan Seraj
We propose a theoretical framework for approximate planning and learning in partially observed systems. Our framework is based on the fundam… (voir plus)ental notion of information state. We provide two equivalent definitions of information state---i) a function of history which is sufficient to compute the expected reward and predict its next value; ii) equivalently, a function of the history which can be recursively updated and is sufficient to compute the expected reward and predict the next observation. An information state always leads to a dynamic programming decomposition. Our key result is to show that if a function of the history (called approximate information state (AIS)) approximately satisfies the properties of the information state, then there is a corresponding approximate dynamic program. We show that the policy computed using this is approximately optimal with bounded loss of optimality. We show that several approximations in state, observation and action spaces in literature can be viewed as instances of AIS. In some of these cases, we obtain tighter bounds. A salient feature of AIS is that it can be learnt from data. We present AIS based multi-time scale policy gradient algorithms. and detailed numerical experiments with low, moderate and high dimensional environments.
Robustness of Whittle Index Policy to Model Approximation
Amit Sinha
Scalable Operator Allocation for Multirobot Assistance: A Restless Bandit Approach
Abhinav Dahiya
Nima Akbarzadeh
Stephen L. Smith
In this article, we consider the problem of allocating human operators in a system with multiple semiautonomous robots. Each robot is requir… (voir plus)ed to perform an independent sequence of tasks, subject to a chance of failing and getting stuck in a fault state at every task. If and when required, a human operator can assist or teleoperate a robot. Conventional dynamic programming-based techniques used to solve such problems face scalability issues due to an exponential growth of state and action spaces with the number of robots and operators. In this article, we derive conditions under which the operator allocation problem satisfies a technical condition called indexability, thereby enabling the use of the Whittle index heuristic. The conditions are easy to check, and we show that they hold for a wide range of problems of interest. Our key insight is to leverage the structure of the value function of individual robots, resulting in conditions that can be verified separately for each state of each robot. We apply these conditions to two types of transitions commonly seen in remote robot supervision systems. Through numerical simulations, we demonstrate the efficacy of Whittle index policy as a near-optimal and scalable approach that outperforms existing scalable methods.
Two Families of Indexable Partially Observable Restless Bandits and Whittle Index Computation
Nima Akbarzadeh
Robustness of Markov perfect equilibrium to model approximations in general-sum dynamic games
Jayakumar Subramanian
Amit Sinha
Dynamic games (also called stochastic games or Markov games) are an important class of games for modeling multi-agent interactions. In many … (voir plus)situations, the dynamics and reward functions of the game are learnt from past data and are therefore approximate. In this paper, we study the robustness of Markov perfect equilibrium to approximations in reward and transition functions. Using approximation results from Markov decision processes, we show that the Markov perfect equilibrium of an approximate (or perturbed) game is always an approximate Markov perfect equilibrium of the original game. We provide explicit bounds on the approximation error in terms of three quantities: (i) the error in approximating the reward functions, (ii) the error in approximating the transition function, and (iii) a property of the value function of the MPE of the approximate game. The second and third quantities depend on the choice of metric on probability spaces. We also present coarser upper bounds which do not depend on the value function but only depend on the properties of the reward and transition functions of the approximate game. We illustrate the results via a numerical example.
Decision Referrals in Human-Automation Teams
Kesav Kaza
Jerome Le Ny
We consider a model for optimal decision referrals in human-automation teams performing binary classification tasks. The automation observes… (voir plus) a batch of independent tasks, analyzes them, and has the option to refer a subset of them to a human operator. The human operator performs fresh analysis of the tasks referred to him. Our key modeling assumption is that the human performance degrades with workload (i.e., the number of tasks referred to human). We model the problem as a stochastic optimization problem. We first consider the special case when the workload of the human is pre-specified. We show that in this setting it is optimal to myopically refer tasks which lead to the largest reduction in the conditional expected cost until the desired workload target is met. We next consider the general setting where there is no constraint on the workload. We leverage the solution of the previous step and provide a search algorithm to efficiently find the optimal set of tasks to refer. Finally, we present a numerical study to compare the performance of our algorithm with some baseline allocation policies.
Mean-field approximation for large-population beauty-contest games
Raihan Seraj
Jerome Le Ny
We study a class of Keynesian beauty contest games where a large number of heterogeneous players attempt to estimate a common parameter base… (voir plus)d on their own observations. The players are rewarded for producing an estimate close to a certain multiplicative factor of the average decision, this factor being specific to each player. This model is motivated by scenarios arising in commodity or financial markets, where investment decisions are sometimes partly based on following a trend. We provide a method to compute Nash equilibria within the class of affine strategies. We then develop a mean-field approximation, in the limit of an infinite number of players, which has the advantage that computing the best-response strategies only requires the knowledge of the parameter distribution of the players, rather than their actual parameters. We show that the mean-field strategies lead to an ε-Nash equilibrium for a system with a finite number of players. We conclude by analyzing the impact on individual behavior of changes in aggregate population behavior.
Thompson sampling for linear quadratic mean-field teams
Mukul Gagrani
Sagar Sudhakara
Ashutosh Nayyar
Yi Ouyang
We consider optimal control of an unknown multi-agent linear quadratic (LQ) system where the dynamics and the cost are coupled across the ag… (voir plus)ents through the mean-field (i.e., empirical mean) of the states and controls. Directly using single-agent LQ learning algorithms in such models results in regret which increases polynomially with the number of agents. We propose a new Thompson sampling based learning algorithm which exploits the structure of the system model and show that the expected Bayesian regret of our proposed algorithm for a system with agents of |M| different types at time horizon T is
Scalable Regret for Learning to Control Network-Coupled Subsystems With Unknown Dynamics
Sagar Sudhakara
Ashutosh Nayyar
Yi. Ouyang
In this article, we consider the problem of controlling an unknown linear quadratic Gaussian (LQG) system consisting of multiple subsystems … (voir plus)connected over a network. Our goal is to minimize and quantify the regret (i.e., loss in performance) of our learning and control strategy with respect to an oracle who knows the system model. Upfront viewing the interconnected subsystems globally and directly using existing LQG learning algorithms for the global system results in a regret that increases super-linearly with the number of subsystems. Instead, we propose a new Thompson sampling-based learning algorithm which exploits the structure of the underlying network. We show that the expected regret of the proposed algorithm is bounded by
Structure-Aware Reinforcement Learning for Node-Overload Protection in Mobile Edge Computing
Anirudha Jitani
Zhongwen Zhu
Hatem Abou-Zeid
Emmanuel Thepie Fapi
Hakimeh Purmehdi
Mobile Edge Computing (MEC) involves placing computational capability and applications at the edge of the network, providing benefits such a… (voir plus)s reduced latency, reduced network congestion, and improved performance of applications. The performance and reliability of MEC degrades significantly when the edge server(s) in the cluster are overloaded. In this work, an adaptive admission control policy to prevent edge node from getting overloaded is presented. This approach is based on a recently-proposed low complexity RL (Reinforcement Learning) algorithm called SALMUT (Structure-Aware Learning for Multiple Thresholds), which exploits the structure of the optimal admission control policy in multi-class queues for an average-cost setting. We extend the framework to work for node overload-protection problem in a discounted-cost setting. The proposed solution is validated using several scenarios mimicking real-world deployments in two different settings — computer simulations and a docker testbed. Our empirical evaluations show that the total discounted cost incurred by SALMUT is similar to state-of-the-art deep RL algorithms such as PPO (Proximal Policy Optimization) and A2C (Advantage Actor Critic) but requires an order of magnitude less time to train, outputs easily interpretable policy, and can be deployed in an online manner.
Maintenance of a collection of machines under partial observability: Indexability and computation of Whittle index
Nima Akbarzadeh
We consider the problem of scheduling maintenance for a collection of machines under partial observations when the state of each machine det… (voir plus)eriorates stochastically in a Markovian manner. We consider two observational models: first, the state of each machine is not observable at all, and second, the state of each machine is observable only if a service-person visits them. The agent takes a maintenance action, e.g., machine replacement, if he is chosen for the task. We model both problems as restless multi-armed bandit problem and propose the Whittle index policy for scheduling the visits. We show that both models are indexable. For the first model, we derive a closed-form expression for the Whittle index. For the second model, we propose an efficient algorithm to compute the Whittle index by exploiting the qualitative properties of the optimal policy. We present detailed numerical experiments which show that for multiple instances of the model, the Whittle index policy outperforms myopic policy and can be close-to-optimal in different setups.