Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
PETRA: Parallel End-to-end Training with Reversible Architectures
Reversible architectures have been shown to be capable of performing on par with their non-reversible architectures, being applied in deep l… (see more)earning for memory savings and generative modeling. In this work, we show how reversible architectures can solve challenges in parallelizing deep model training. We introduce PETRA, a novel alternative to backpropagation for parallelizing gradient computations. PETRA facilitates effective model parallelism by enabling stages (i.e., a set of layers) to compute independently on different devices, while only needing to communicate activations and gradients between each other. By decoupling the forward and backward passes and keeping a single updated version of the parameters, the need for weight stashing is also removed. We develop a custom autograd-like training framework for PETRA, and we demonstrate its effectiveness on CIFAR-10, ImageNet32, and ImageNet, achieving competitive accuracies comparable to backpropagation using ResNet-18, ResNet-34, and ResNet-50 models.
Convex relaxations of the optimal power flow (OPF) problem provide an efficient alternative to solving the intractable alternating current (… (see more)AC) optimal power flow. The conic subset of OPF convex relaxations, in particular, greatly accelerate resolution while leading to high-quality approximations that are exact in several scenarios. However, the sufficient conditions guaranteeing exactness are stringent, e.g., requiring radial topologies. In this short communication, we present two equivalent ex post conditions for the exactness of any conic relaxation of the OPF. These rely on obtaining either a rank-1 voltage matrix or self-coherent cycles. Instead of relying on sufficient conditions a priori, satisfying one of the presented ex post conditions acts as an exactness certificate for the computed solution. The operator can therefore obtain an optimality guarantee when solving a conic relaxation even when a priori exactness requirements are not met. Finally, we present numerical examples from the MATPOWER library where the ex post conditions hold even though the exactness sufficient conditions do not, thereby illustrating the use of the conditions.
Transformers have become the cornerstone of modern large-scale language models; however, their dependence on softmax attention poses a major… (see more) computational bottleneck, particularly in long-context settings. In this work, rather than following prevalent approaches such as linear attention (or SSMs) and local attention, we introduce an intermediate design called \rat between recurrence and attention mechanisms. It partitions the input into chunks, applies a simple linear recurrence within each chunk to capture local dependencies, and then performs softmax attention across chunks to model long-range interactions. By adjusting the size of the chunk, \rat enables flexible trade-offs, combining the strengths of RNN and attention. Empirically, with a chunk size of 16, the \rat layer achieves a \(7\times\) improvement in training speed with 100K token sequences and \(9\times\) in generation at 4K sequence length, while maintaining similar or sometimes even better accuracy compared to standard attention. We demonstrate this by training 1.3B parameter models from scratch and performing large-scale evaluations, including short- and long-context benchmarks, as well as supervised fine-tuning~(SFT). We further propose a hybrid architecture that interleaves \rat with local attention. By combining efficient long-range modeling with strong local interactions, this hybrid design not only improves inference speed and reduces cache memory usage compared to attention, but also consistently enhances performance, for example, achieving an average 1 point gain in commonsense reasoning tasks, up to 4 points on code tasks, and a 1 point Rouge-L increase in a summarization SFT task. Code is available at https://github.com/CLAIRE-Labo/RAT
Leveraging Dantzig–Wolfe Decomposition in the Original Variable Space for Mixed-Integer Programming Dantzig–Wolfe decomposition has been… (see more) extensively applied to solve large-scale mixed-integer programs with decomposable structures, leading to exact solution approaches, such as branch and price. However, these approaches would require solving the problem in an extended variable space and are not readily present in off-the-shelf solvers. In “Recovering Dantzig–Wolfe Bounds by Cutting Planes,” Chen, Günlük, and Lodi propose a computational effective approach for generating cutting planes from Dantzig–Wolfe decomposition to enhance branch and cut in the space of original variables. The proposed approach requires a relatively small number of cutting planes to recover the strength of the Dantzig–Wolfe dual bound and should be easy to implement in general-purpose mixed-integer programming solvers. The authors show that these cutting planes typically lead to a formulation with lower dual degeneracy and hence, a better computational performance than naïve approaches, such as the objective function cut.
This paper presents a comprehensive study on using deep reinforcement learning (RL) to create dynamic locomotion controllers for bipedal rob… (see more)ots. Going beyond focusing on a single locomotion skill, we develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing. Our RL-based controller incorporates a novel dual-history architecture, utilizing both a long-term and short-term input/output (I/O) history of the robot. This control architecture, when trained through the proposed end-to-end RL approach, consistently outperforms other methods across a diverse range of skills in both simulation and the real world.The study also delves into the adaptivity and robustness introduced by the proposed RL system in developing locomotion controllers. We demonstrate that the proposed architecture can adapt to both time-invariant dynamics shifts and time-variant changes, such as contact events, by effectively using the robot's I/O history. Additionally, we identify task randomization as another key source of robustness, fostering better task generalization and compliance to disturbances. The resulting control policies can be successfully deployed on Cassie, a torque-controlled human-sized bipedal robot. This work pushes the limits of agility for bipedal robots through extensive real-world experiments. We demonstrate a diverse range of locomotion skills, including: robust standing, versatile walking, fast running with a demonstration of a 400-meter dash, and a diverse set of jumping skills, such as standing long jumps and high jumps.
Data augmentation is a widely used and effective technique to improve the generalization performance of deep neural networks. Yet, despite o… (see more)ften facing limited data availability when working with medical images, it is frequently underutilized. This appears to come from a gap in our collective understanding of the efficacy of different augmentation techniques across different tasks and modalities. One modality where this is especially true is ultrasound imaging. This work addresses this gap by analyzing the effectiveness of different augmentation techniques at improving model performance across a wide range of ultrasound image analysis tasks. To achieve this, we introduce a new standardized benchmark of 14 ultrasound image classification and semantic segmentation tasks from 10 different sources and covering 11 body regions. Our results demonstrate that many of the augmentations commonly used for tasks on natural images are also effective on ultrasound images, even more so than augmentations developed specifically for ultrasound images in some cases. We also show that diverse augmentation using TrivialAugment, which is widely used for natural images, is also effective for ultrasound images. Moreover, our proposed methodology represents a structured approach for assessing various data augmentations that can be applied to other contexts and modalities.