We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Assessing the quality and value of metabolic chart data for capturing core outcomes for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency
Recent large language models (LLMs) have been shown to be effective for misinformation detection. However, the choice of LLMs for experiment… (see more)s varies widely, leading to uncertain conclusions. In particular, GPT-4 is known to be strong in this domain, but it is closed source, potentially expensive, and can show instability between different versions. Meanwhile, alternative LLMs have given mixed results. In this work, we show that Zephyr-7b presents a consistently viable alternative, overcoming key limitations of commonly used approaches like Llama-2 and GPT-3.5. This provides the research community with a solid open-source option and shows open-source models are gradually catching up on this task. We then highlight how GPT-3.5 exhibits unstable performance, such that this very widely used model could provide misleading results in misinformation detection. Finally, we validate new tools including approaches to structured output and the latest version of GPT-4 (Turbo), showing they do not compromise performance, thus unlocking them for future research and potentially enabling more complex pipelines for misinformation mitigation.
Dynamic graphs are rich data structures that are used to model complex relationships between entities over time. In particular, anomaly dete… (see more)ction in temporal graphs is crucial for many real-world applications such as intrusion identification in network systems, detection of ecosystem disturbances, and detection of epidemic outbreaks. In this article, we focus on change point detection in dynamic graphs and address three main challenges associated with this problem: (i) how to compare graph snapshots across time, (ii) how to capture temporal dependencies, and (iii) how to combine different views of a temporal graph. To solve the above challenges, we first propose Laplacian Anomaly Detection (LAD) which uses the spectrum of graph Laplacian as the low dimensional embedding of the graph structure at each snapshot. LAD explicitly models short-term and long-term dependencies by applying two sliding windows. Next, we propose MultiLAD, a simple and effective generalization of LAD to multi-view graphs. MultiLAD provides the first change point detection method for multi-view dynamic graphs. It aggregates the singular values of the normalized graph Laplacian from different views through the scalar power mean operation. Through extensive synthetic experiments, we show that (i) LAD and MultiLAD are accurate and outperforms state-of-the-art baselines and their multi-view extensions by a large margin, (ii) MultiLAD’s advantage over contenders significantly increases when additional views are available, and (iii) MultiLAD is highly robust to noise from individual views. In five real-world dynamic graphs, we demonstrate that LAD and MultiLAD identify significant events as top anomalies such as the implementation of government COVID-19 interventions which impacted the population mobility in multi-view traffic networks.
2024-01-12
ACM Transactions on Knowledge Discovery from Data (published)
The recent breakthroughs in natural language processing for model pretraining on large quantities of data have opened the way for similar fo… (see more)undation models in computer vision. These models could greatly simplify the use of images in any system by producing all-purpose visual features, i.e., features that work across image distributions and tasks without finetuning. This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources. We revisit existing approaches and combine different techniques to scale our pretraining in terms of data and model size. Most of the technical contributions aim at accelerating and stabilizing the training at scale. In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature. In terms of models, we train a ViT model with 1B parameters and distill it into a series of smaller models that surpass the best available all-purpose features, OpenCLIP on most of the benchmarks at image and pixel levels.
Temporal graph neural networks have shown promising results in learning inductive representations by automatically extracting temporal patte… (see more)rns. However, previous works often rely on complex memory modules or inefficient random walk methods to construct temporal representations. To address these limitations, we present an efficient yet effective attention-based encoder that leverages temporal edge encodings and window-based subgraph sampling to generate task-agnostic embeddings. Moreover, we propose a joint-embedding architecture using non-contrastive SSL to learn rich temporal embeddings without labels. Experimental results on 7 benchmark datasets indicate that on average, our model outperforms SoTA baselines on the future link prediction task by 4.23% for the transductive setting and 3.30% for the inductive setting while only requiring 5-10x less training/inference time. Lastly, different aspects of the proposed framework are investigated through experimental analysis and ablation studies. The code is publicly available at https://github.com/huawei-noah/noah-research/tree/master/graph_atlas.
This paper introduces JaxPruner, an open-source JAX-based pruning and sparse training library for machine learning research. JaxPruner aims … (see more)to accelerate research on sparse neural networks by providing concise implementations of popular pruning and sparse training algorithms with minimal memory and latency overhead. Algorithms implemented in JaxPruner use a common API and work seamlessly with the popular optimization library Optax, which, in turn, enables easy integration with existing JAX based libraries. We demonstrate this ease of integration by providing examples in four different codebases: Scenic, t5x, Dopamine and FedJAX and provide baseline experiments on popular benchmarks.
Abstract Neuronal inhibition, primarily mediated by GABAergic neurotransmission, is crucial for brain development and healthy cognition. Gam… (see more)ma-aminobutyric acid concentration levels in sensory areas have been shown to correlate with hemodynamic and oscillatory neuronal responses. How these measures relate to one another during working memory, a higher-order cognitive process, is still poorly understood. We address this gap by collecting magnetoencephalography, functional magnetic resonance imaging, and Flumazenil positron emission tomography data within the same subject cohort using an n-back working-memory paradigm. By probing the relationship between GABAA receptor distribution, neural oscillations, and Blood Oxygen Level Dependent (BOLD) modulations, we found that GABAA receptor density in higher-order cortical areas predicted the reaction times on the working-memory task and correlated positively with the peak frequency of gamma power modulations and negatively with BOLD amplitude. These findings support and extend theories linking gamma oscillations and hemodynamic responses to gamma-aminobutyric acid neurotransmission and to the excitation-inhibition balance and cognitive performance in humans. Considering the small sample size of the study, future studies should test whether these findings also hold for other, larger cohorts as well as to examine in detail how the GABAergic system and neural fluctuations jointly support working-memory task performance.