Strong Model Collapse
Yunzhen Feng
Arjun Subramonian
Julia Kempe
Strong Model Collapse
Yunzhen Feng
Arjun Subramonian
Julia Kempe
Within the scaling laws paradigm, which underpins the training of large neural networks like ChatGPT and Llama, we consider a supervised reg… (see more)ression setting and establish the existance of a strong form of the model collapse phenomenon, a critical performance degradation due to synthetic data in the training corpus. Our results show that even the smallest fraction of synthetic data (e.g., as little as 1\% of the total training dataset) can still lead to model collapse: larger and larger training sets do not enhance performance. We further investigate whether increasing model size, an approach aligned with current trends in training large language models, exacerbates or mitigates model collapse. In a simplified regime where neural networks are approximated via random projections of tunable size, we both theoretically and empirically show that larger models can amplify model collapse. Interestingly, our theory also indicates that, beyond the interpolation threshold (which can be extremely high for very large datasets), larger models may mitigate the collapse, although they do not entirely prevent it. Our theoretical findings are empirically verified through experiments on language models and feed-forward neural networks for images.
Strong Model Collapse
Yunzhen Feng
Arjun Subramonian
Julia Kempe
Strong Model Collapse
Yunzhen Feng
Arjun Subramonian
Julia Kempe
Within the scaling laws paradigm, which underpins the training of large neural networks like ChatGPT and Llama, we consider a supervised reg… (see more)ression setting and establish the existance of a strong form of the model collapse phenomenon, a critical performance degradation due to synthetic data in the training corpus. Our results show that even the smallest fraction of synthetic data (e.g., as little as 1\% of the total training dataset) can still lead to model collapse: larger and larger training sets do not enhance performance. We further investigate whether increasing model size, an approach aligned with current trends in training large language models, exacerbates or mitigates model collapse. In a simplified regime where neural networks are approximated via random projections of tunable size, we both theoretically and empirically show that larger models can amplify model collapse. Interestingly, our theory also indicates that, beyond the interpolation threshold (which can be extremely high for very large datasets), larger models may mitigate the collapse, although they do not entirely prevent it. Our theoretical findings are empirically verified through experiments on language models and feed-forward neural networks for images.
Brain-like neural dynamics for behavioral control develop through reinforcement learning
Olivier Codol
Nanda H Krishna
M.G. Perich
During development, neural circuits are shaped continuously as we learn to control our bodies. The ultimate goal of this process is to produ… (see more)ce neural dynamics that enable the rich repertoire of behaviors we perform with our limbs. What begins as a series of “babbles” coalesces into skilled motor output as the brain rapidly learns to control the body. However, the nature of the teaching signal underlying this normative learning process remains elusive. Here, we test two well-established and biologically plausible theories—supervised learning (SL) and reinforcement learning (RL)—that could explain how neural circuits develop the capacity for skilled movements. We trained recurrent neural networks to control a biomechanical model of a primate arm using either SL or RL and compared the resulting neural dynamics to populations of neurons recorded from the motor cortex of monkeys performing the same movements. Intriguingly, only RL-trained networks produced neural activity that matched their biological counterparts in terms of both the geometry and dynamics of population activity. We show that the similarity between RL-trained networks and biological brains depends critically on matching biomechanical properties of the limb. We then demonstrated that monkeys and RL-trained networks, but not SL-trained networks, show a strikingly similar capacity for robust short-term behavioral adaptation to a movement perturbation, indicating a fundamental and general commonality in the neural control policy. Together, our results support the hypothesis that neural dynamics for behavioral control emerge through a process akin to reinforcement learning. The resulting neural circuits offer numerous advantages for adaptable behavioral control over simpler and more efficient learning rules and expand our understanding of how developmental processes shape neural dynamics.
Improved Off-policy Reinforcement Learning in Biological Sequence Design
Hyeonah Kim
Minsu Kim
Taeyoung Yun
Sanghyeok Choi
Alex Hern'andez-Garc'ia
Jinkyoo Park
Designing biological sequences with desired properties is a significant challenge due to the combinatorially vast search space and the high … (see more)cost of evaluating each candidate sequence. To address these challenges, reinforcement learning (RL) methods, such as GFlowNets, utilize proxy models for rapid reward evaluation and annotated data for policy training. Although these approaches have shown promise in generating diverse and novel sequences, the limited training data relative to the vast search space often leads to the misspecification of proxy for out-of-distribution inputs. We introduce
Improved Off-policy Reinforcement Learning in Biological Sequence Design
Hyeonah Kim
Minsu Kim
Taeyoung Yun
Sanghyeok Choi
Alex Hern'andez-Garc'ia
Jinkyoo Park
Designing biological sequences with desired properties is a significant challenge due to the combinatorially vast search space and the high … (see more)cost of evaluating each candidate sequence. To address these challenges, reinforcement learning (RL) methods, such as GFlowNets, utilize proxy models for rapid reward evaluation and annotated data for policy training. Although these approaches have shown promise in generating diverse and novel sequences, the limited training data relative to the vast search space often leads to the misspecification of proxy for out-of-distribution inputs. We introduce
Toward Debugging Deep Reinforcement Learning Programs with RLExplorer
Rached Bouchoucha
Ahmed Haj Yahmed
Darshan Patil
Janarthanan Rajendran
Amin Nikanjam
Deep reinforcement learning (DRL) has shown success in diverse domains such as robotics, computer games, and recommendation systems. However… (see more), like any other software system, DRL-based software systems are susceptible to faults that pose unique challenges for debugging and diagnosing. These faults often result in unexpected behavior without explicit failures and error messages, making debugging difficult and time-consuming. Therefore, automating the monitoring and diagnosis of DRL systems is crucial to alleviate the burden on developers. In this paper, we propose RLExplorer, the first fault diagnosis approach for DRL-based software systems. RLExplorer automatically monitors training traces and runs diagnosis routines based on properties of the DRL learning dynamics to detect the occurrence of DRL-specific faults. It then logs the results of these diagnoses as warnings that cover theoretical concepts, recommended practices, and potential solutions to the identified faults. We conducted two sets of evaluations to assess RLExplorer. Our first evaluation of faulty DRL samples from Stack Overflow revealed that our approach can effectively diagnose real faults in 83% of the cases. Our second evaluation of RLExplorer with 15 DRL experts/developers showed that (1) RLExplorer could identify 3.6 times more defects than manual debugging and (2) RLExplorer is easily integrated into DRL applications.
Toward Debugging Deep Reinforcement Learning Programs with RLExplorer
Rached Bouchoucha
Ahmed Haj Yahmed
Darshan Patil
Janarthanan Rajendran
Amin Nikanjam
Deep reinforcement learning (DRL) has shown success in diverse domains such as robotics, computer games, and recommendation systems. However… (see more), like any other software system, DRL-based software systems are susceptible to faults that pose unique challenges for debugging and diagnosing. These faults often result in unexpected behavior without explicit failures and error messages, making debugging difficult and time-consuming. Therefore, automating the monitoring and diagnosis of DRL systems is crucial to alleviate the burden on developers. In this paper, we propose RLExplorer, the first fault diagnosis approach for DRL-based software systems. RLExplorer automatically monitors training traces and runs diagnosis routines based on properties of the DRL learning dynamics to detect the occurrence of DRL-specific faults. It then logs the results of these diagnoses as warnings that cover theoretical concepts, recommended practices, and potential solutions to the identified faults. We conducted two sets of evaluations to assess RLExplorer. Our first evaluation of faulty DRL samples from Stack Overflow revealed that our approach can effectively diagnose real faults in 83% of the cases. Our second evaluation of RLExplorer with 15 DRL experts/developers showed that (1) RLExplorer could identify 3.6 times more defects than manual debugging and (2) RLExplorer is easily integrated into DRL applications.
Understanding Web Application Workloads and Their Applications: Systematic Literature Review and Characterization
Roozbeh Aghili
Qiaolin Qin
Heng Li
DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images
Chen Liu
Danqi Liao
Alejandro Parada-Mayorga
Alejandro Ribeiro
Marcello DiStasio
The proliferation of digital microscopy images, driven by advances in automated whole slide scanning, presents significant opportunities for… (see more) biomedical research and clinical diagnostics. However, accurately annotating densely packed information in these images remains a major challenge. To address this, we introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks. DiffKillR employs two complementary neural networks: one that learns a diffeomorphism-invariant feature space for robust cell matching and another that computes the precise warping field between cells for annotation mapping. Using a small set of annotated archetypes, DiffKillR efficiently propagates annotations across large microscopy images, reducing the need for extensive manual labeling. More importantly, it is suitable for any type of pixel-level annotation. We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods.
DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images
Chen Liu
Danqi Liao
Alejandro Parada-Mayorga
Alejandro Ribeiro
Marcello DiStasio
The proliferation of digital microscopy images, driven by advances in automated whole slide scanning, presents significant opportunities for… (see more) biomedical research and clinical diagnostics. However, accurately annotating densely packed information in these images remains a major challenge. To address this, we introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks. DiffKillR employs two complementary neural networks: one that learns a diffeomorphism-invariant feature space for robust cell matching and another that computes the precise warping field between cells for annotation mapping. Using a small set of annotated archetypes, DiffKillR efficiently propagates annotations across large microscopy images, reducing the need for extensive manual labeling. More importantly, it is suitable for any type of pixel-level annotation. We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods.