Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
We propose Bayesian hypernetworks: a framework for approximate Bayesian inference in neural networks. A Bayesian hypernetwork, h, is a neura… (see more)l network which learns to transform a simple noise distribution, p(e) = N(0,I), to a distribution q(t) := q(h(e)) over the parameters t of another neural network (the ``primary network). We train q with variational inference, using an invertible h to enable efficient estimation of the variational lower bound on the posterior p(t | D) via sampling. In contrast to most methods for Bayesian deep learning, Bayesian hypernets can represent a complex multimodal approximate posterior with correlations between parameters, while enabling cheap iid sampling of q(t). In practice, Bayesian hypernets provide a better defense against adversarial examples than dropout, and also exhibit competitive performance on a suite of tasks which evaluate model uncertainty, including regularization, active learning, and anomaly detection.
We propose Bayesian hypernetworks: a framework for approximate Bayesian inference in neural networks. A Bayesian hypernetwork, h, is a neura… (see more)l network which learns to transform a simple noise distribution, p(e) = N(0,I), to a distribution q(t) := q(h(e)) over the parameters t of another neural network (the ``primary network). We train q with variational inference, using an invertible h to enable efficient estimation of the variational lower bound on the posterior p(t | D) via sampling. In contrast to most methods for Bayesian deep learning, Bayesian hypernets can represent a complex multimodal approximate posterior with correlations between parameters, while enabling cheap iid sampling of q(t). In practice, Bayesian hypernets provide a better defense against adversarial examples than dropout, and also exhibit competitive performance on a suite of tasks which evaluate model uncertainty, including regularization, active learning, and anomaly detection.
Reliable measures of statistical dependence could potentially be useful tools for learning independent features and performing tasks like so… (see more)urce separation using Independent Component Analysis (ICA). Unfortunately, many of such measures, like the mutual information, are hard to estimate and optimize directly. We propose to learn independent features with adversarial objectives (Goodfellow et al. 2014, Arjovsky et al. 2017) which optimize such measures implicitly. These objectives compare samples from the joint distribution and the product of the marginals without the need to compute any probability densities. We also propose two methods for obtaining samples from the product of the marginals using either a simple resampling trick or a separate parametric distribution. Our experiments show that this strategy can easily be applied to different types of model architectures and solve both linear and non-linear ICA problems.
In this paper, we study two aspects of the variational autoencoder (VAE): the prior distribution over the latent variables and its correspon… (see more)ding posterior. First, we decompose the learning of VAEs into layerwise density estimation, and argue that having a flexible prior is beneficial to both sample generation and inference. Second, we analyze the family of inverse autoregressive flows (inverse AF) and show that with further improvement, inverse AF could be used as universal approximation to any complicated posterior. Our analysis results in a unified approach to parameterizing a VAE, without the need to restrict ourselves to use factorial Gaussians in the latent real space.
Weighted finite automata (WFA) can expressively model functions defined over strings but are inherently linear models. Given the recent succ… (see more)esses of nonlinear models in machine learning, it is natural to wonder whether ex-tending WFA to the nonlinear setting would be beneficial. In this paper, we propose a novel model of neural network based nonlinearWFA model (NL-WFA) along with a learning algorithm. Our learning algorithm is inspired by the spectral learning algorithm for WFAand relies on a nonlinear decomposition of the so-called Hankel matrix, by means of an auto-encoder network. The expressive power of NL-WFA and the proposed learning algorithm are assessed on both synthetic and real-world data, showing that NL-WFA can lead to smaller model sizes and infer complex grammatical structures from data.
We introduce a general-purpose conditioning method for neural networks called FiLM: Feature-wise Linear Modulation. FiLM layers influence ne… (see more)ural network computation via a simple, feature-wise affine transformation based on conditioning information. We show that FiLM layers are highly effective for visual reasoning - answering image-related questions which require a multi-step, high-level process - a task which has proven difficult for standard deep learning methods that do not explicitly model reasoning. Specifically, we show on visual reasoning tasks that FiLM layers 1) halve state-of-the-art error for the CLEVR benchmark, 2) modulate features in a coherent manner, 3) are robust to ablations and architectural modifications, and 4) generalize well to challenging, new data from few examples or even zero-shot.
Humans interpret texts with respect to some background information, or world knowledge, and we would like to develop automatic reading compr… (see more)ehension systems that can do the same. In this paper, we introduce a task and several models to drive progress towards this goal. In particular, we propose the task of rare entity prediction: given a web document with several entities removed, models are tasked with predicting the correct missing entities conditioned on the document context and the lexical resources. This task is challenging due to the diversity of language styles and the extremely large number of rare entities. We propose two recurrent neural network architectures which make use of external knowledge in the form of entity descriptions. Our experiments show that our hierarchical LSTM model performs significantly better at the rare entity prediction task than those that do not make use of external resources.
2017-09-01
Conference on Empirical Methods in Natural Language Processing (published)
End-to-end design of dialogue systems has recently become a popular research topic thanks to powerful tools such as encoder-decoder architec… (see more)tures for sequence-to-sequence learning. Yet, most current approaches cast human-machine dialogue management as a supervised learning problem, aiming at predicting the next utterance of a participant given the full history of the dialogue. This vision is too simplistic to render the intrinsic planning problem inherent to dialogue as well as its grounded nature , making the context of a dialogue larger than the sole history. This is why only chitchat and question answering tasks have been addressed so far using end-to-end architectures. In this paper, we introduce a Deep Reinforcement Learning method to optimize visually grounded task-oriented dialogues , based on the policy gradient algorithm. This approach is tested on a dataset of 120k dialogues collected through Mechanical Turk and provides encouraging results at solving both the problem of generating natural dialogues and the task of discovering a specific object in a complex picture.
2017-08-19
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (published)