Portrait of Jianyuan Zhong is unavailable

Jianyuan Zhong

Alumni

Publications

SpeechBrain: A General-Purpose Speech Toolkit
Peter William VanHarn Plantinga
Aku Rouhe
Samuele Cornell
Chien-Feng Liao
Elena Rastorgueva
Franccois Grondin
William Aris
Yan Gao
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to facilitate the research and development of neural speech proc… (see more)essing technologies by being simple, flexible, user-friendly, and well-documented. This paper describes the core architecture designed to support several tasks of common interest, allowing users to naturally conceive, compare and share novel speech processing pipelines. SpeechBrain achieves competitive or state-of-the-art performance in a wide range of speech benchmarks. It also provides training recipes, pretrained models, and inference scripts for popular speech datasets, as well as tutorials which allow anyone with basic Python proficiency to familiarize themselves with speech technologies.
Multi-Task Self-Supervised Learning for Robust Speech Recognition
Santiago Pascual
Pawel Swietojanski
Joao Monteiro
Jan Trmal
Despite the growing interest in unsupervised learning, extracting meaningful knowledge from unlabelled audio remains an open challenge. To t… (see more)ake a step in this direction, we recently proposed a problem-agnostic speech encoder (PASE), that combines a convolutional encoder followed by multiple neural networks, called workers, tasked to solve self-supervised problems (i.e., ones that do not require manual annotations as ground truth). PASE was shown to capture relevant speech information, including speaker voice-print and phonemes. This paper proposes PASE+, an improved version of PASE for robust speech recognition in noisy and reverberant environments. To this end, we employ an online speech distortion module, that contaminates the input signals with a variety of random disturbances. We then propose a revised encoder that better learns short- and long-term speech dynamics with an efficient combination of recurrent and convolutional networks. Finally, we refine the set of workers used in self-supervision to encourage better cooperation.Results on TIMIT, DIRHA and CHiME-5 show that PASE+ significantly outperforms both the previous version of PASE as well as common acoustic features. Interestingly, PASE+ learns transferable representations suitable for highly mismatched acoustic conditions.