MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization
Andoni I. Garmendia
Josu Ceberio
Alexander Mendiburu
Open, Closed, or Small Language Models for Text Classification?
Hao Yu
Zachary Yang
Kellin Pelrine
Recent advancements in large language models have demonstrated remarkable capabilities across various NLP tasks. But many questions remain, … (see more)including whether open-source models match closed ones, why these models excel or struggle with certain tasks, and what types of practical procedures can improve performance. We address these questions in the context of classification by evaluating three classes of models using eight datasets across three distinct tasks: named entity recognition, political party prediction, and misinformation detection. While larger LLMs often lead to improved performance, open-source models can rival their closed-source counterparts by fine-tuning. Moreover, supervised smaller models, like RoBERTa, can achieve similar or even greater performance in many datasets compared to generative LLMs. On the other hand, closed models maintain an advantage in hard tasks that demand the most generalizability. This study underscores the importance of model selection based on task requirements
Pontomedullary junction as a reference for spinal cord cross-sectional area: validation across neck positions
Sandrine Bédard
Maxime Bouthillier
GTM-decon: guided-topic modeling of single-cell transcriptomes enables sub-cell-type and disease-subtype deconvolution of bulk transcriptomes
Lakshmipuram Seshadri Swapna
Michael Huang
YORC: Yoruba Reading Comprehension dataset
Aremu Anuoluwapo
Jesujoba Oluwadara Alabi
In this paper, we create YORC: a new multi-choice Yoruba Reading Comprehension dataset that is based on Yoruba high-school reading comprehen… (see more)sion examination. We provide baseline results by performing cross-lingual transfer using existing English RACE dataset based on a pre-trained encoder-only model. Additionally, we provide results by prompting large language models (LLMs) like GPT-4.
Age-related bias and artificial intelligence: a scoping review
Charlene H Chu
Simon Donato-Woodger
Shehroz S Khan
Rune Nyrup
Kathleen Leslie
Alexandra Lyn
Tianyu Shi
Andria Bianchi
Amanda Grenier
Consciousness in Artificial Intelligence: Insights from the Science of Consciousness
Patrick Mark Butlin
R. Long
Eric Elmoznino
Jonathan C. P. Birch
Axel Constant
George Deane
S. Fleming
C. Frith
Xuanxiu Ji
Ryota Kanai
C. Klein
Grace W. Lindsay
Matthias Michel
Liad Mudrik
Megan A. K. Peters
Eric Schwitzgebel
Jonathan Simon
Rufin Vanrullen
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (see more)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
Consciousness in Artificial Intelligence: Insights from the Science of Consciousness
Patrick Mark Butlin
R. Long
Eric Elmoznino
Jonathan C. P. Birch
Axel Constant
George Deane
S. Fleming
C. Frith
Xuanxiu Ji
Ryota Kanai
C. Klein
Grace W. Lindsay
Matthias Michel
Liad Mudrik
Megan A. K. Peters
Eric Schwitzgebel
Jonathan Simon
Rufin Vanrullen
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (see more)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
Consciousness in Artificial Intelligence: Insights from the Science of Consciousness
Patrick Mark Butlin
R. Long
Eric Elmoznino
Jonathan C. P. Birch
Axel Constant
George Deane
S. Fleming
C. Frith
Xuanxiu Ji
Ryota Kanai
C. Klein
Grace W. Lindsay
Matthias Michel
Liad Mudrik
Megan A. K. Peters
Eric Schwitzgebel
Jonathan Simon
Rufin Vanrullen
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (see more)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
Consciousness in Artificial Intelligence: Insights from the Science of Consciousness
Patrick Mark Butlin
R. Long
Eric Elmoznino
Jonathan C. P. Birch
Axel Constant
George Deane
S. Fleming
C. Frith
Xuanxiu Ji
Ryota Kanai
C. Klein
Grace W. Lindsay
Matthias Michel
Liad Mudrik
Megan A. K. Peters
Eric Schwitzgebel
Jonathan Simon
Rufin Vanrullen
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (see more)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
Consciousness in Artificial Intelligence: Insights from the Science of Consciousness
Patrick Mark Butlin
R. Long
Eric Elmoznino
Jonathan C. P. Birch
Axel Constant
George Deane
S. Fleming
C. Frith
Xuanxiu Ji
Ryota Kanai
C. Klein
Grace W. Lindsay
Matthias Michel
Liad Mudrik
Megan A. K. Peters
Eric Schwitzgebel
Jonathan Simon
Rufin Vanrullen
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (see more)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
Consciousness in Artificial Intelligence: Insights from the Science of Consciousness
Patrick Mark Butlin
R. Long
Eric Elmoznino
Jonathan C. P. Birch
Axel Constant
George Deane
S. Fleming
C. Frith
Xuanxiu Ji
Ryota Kanai
C. Klein
Grace W. Lindsay
Matthias Michel
Liad Mudrik
Megan A. K. Peters
Eric Schwitzgebel
Jonathan Simon
Rufin Vanrullen
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argu… (see more)es for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive"indicator properties"of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.