Interpretable Convolutional Filters with SincNet
Deep learning is currently playing a crucial role toward higher levels of artificial intelligence. This paradigm allows neural networks to l… (see more)earn complex and abstract representations, that are progressively obtained by combining simpler ones. Nevertheless, the internal "black-box" representations automatically discovered by current neural architectures often suffer from a lack of interpretability, making of primary interest the study of explainable machine learning techniques. This paper summarizes our recent efforts to develop a more interpretable neural model for directly processing speech from the raw waveform. In particular, we propose SincNet, a novel Convolutional Neural Network (CNN) that encourages the first layer to discover more meaningful filters by exploiting parametrized sinc functions. In contrast to standard CNNs, which learn all the elements of each filter, only low and high cutoff frequencies of band-pass filters are directly learned from data. This inductive bias offers a very compact way to derive a customized filter-bank front-end, that only depends on some parameters with a clear physical meaning. Our experiments, conducted on both speaker and speech recognition, show that the proposed architecture converges faster, performs better, and is more interpretable than standard CNNs.
Harmonic Recomposition using Conditional Autoregressive Modeling
Kyle Kastner
Rithesh Kumar
Tim Cooijmans
We demonstrate a conditional autoregressive pipeline for efficient music recomposition, based on methods presented in van den Oord et al.(20… (see more)17). Recomposition (Casal & Casey, 2010) focuses on reworking existing musical pieces, adhering to structure at a high level while also re-imagining other aspects of the work. This can involve reuse of pre-existing themes or parts of the original piece, while also requiring the flexibility to generate new content at different levels of granularity. Applying the aforementioned modeling pipeline to recomposition, we show diverse and structured generation conditioned on chord sequence annotations.
On Training Recurrent Neural Networks for Lifelong Learning
Shagun Sodhani
Catastrophic forgetting and capacity saturation are the central challenges of any parametric lifelong learning system. In this work, we stud… (see more)y these challenges in the context of sequential supervised learning with emphasis on recurrent neural networks. To evaluate the models in the lifelong learning setting, we propose a curriculum-based, simple, and intuitive benchmark where the models are trained on tasks with increasing levels of difficulty. To measure the impact of catastrophic forgetting, the model is tested on all the previous tasks as it completes any task. As a step towards developing true lifelong learning systems, we unify Gradient Episodic Memory (a catastrophic forgetting alleviation approach) and Net2Net(a capacity expansion approach). Both these models are proposed in the context of feedforward networks and we evaluate the feasibility of using them for recurrent networks. Evaluation on the proposed benchmark shows that the unified model is more suitable than the constituent models for lifelong learning setting.
BabyAI: First Steps Towards Grounded Language Learning With a Human In the Loop
Maxime Chevalier-Boisvert
Lucas Willems
Chitwan Saharia
Thien Huu Nguyen
Allowing humans to interactively train artificial agents to understand language instructions is desirable for both practical and scientific … (see more)reasons, but given the poor data efficiency of the current learning methods, this goal may require substantial research efforts. Here, we introduce the BabyAI research platform to support investigations towards including humans in the loop for grounded language learning. The BabyAI platform comprises an extensible suite of 19 levels of increasing difficulty. The levels gradually lead the agent towards acquiring a combinatorially rich synthetic language which is a proper subset of English. The platform also provides a heuristic expert agent for the purpose of simulating a human teacher. We report baseline results and estimate the amount of human involvement that would be required to train a neural network-based agent on some of the BabyAI levels. We put forward strong evidence that current deep learning methods are not yet sufficiently sample efficient when it comes to learning a language with compositional properties.
Visual Reasoning with Multi-hop Feature Modulation
Florian Strub
Mathieu Seurin
Ethan Perez
Harm de Vries
Jérémie Mary
P. Preux
Olivier Pietquin
HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
Zhilin Yang
Peng Qi
Saizheng Zhang
William W. Cohen
Russ Salakhutdinov
Christopher D Manning
Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers. We int… (see more)roduce HotpotQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems’ ability to extract relevant facts and perform necessary comparison. We show that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions.
Introduction to NIPS 2017 Competition Track
Sergio Escalera
Markus Weimer
Mikhail Burtsev
Valentin Malykh
Varvara Logacheva
Ryan Lowe
Iulian V. Serban
Alexander Rudnicky
Alan W. Black
Shrimai Prabhumoye
Łukasz Kidziński
Sharada Prasanna Mohanty
Carmichael F. Ong
Jennifer L. Hicks
Sergey Levine
Marcel Salathé
Scott Delp
Iker Huerga
Alexander Grigorenko … (see 19 more)
Leifur Thorbergsson
Anasuya Das
Kyla Nemitz
Jenna Sandker
Stephen King
Alexander S. Ecker
Leon A. Gatys
Matthias Bethge
Jordan Boyd-Graber
Shi Feng
Pedro Rodriguez
Mohit Iyyer
He He
Hal Daumé III
Sean McGregor
Amir Banifatemi
Alexey Kurakin
Ian G Goodfellow
Samy Bengio
The First Conversational Intelligence Challenge
Mikhail Burtsev
Varvara Logacheva
Valentin Malykh
Iulian V. Serban
Ryan Lowe
Shrimai Prabhumoye
Alan W. Black
Alexander Rudnicky
Deep Graph Infomax
Petar Veličković
William Fedus
William L. Hamilton
Pietro Lio
Deep Graph Infomax
Petar Veličković
William Fedus
William L. Hamilton
Pietro Lio
Modeling the Long Term Future in Model-Based Reinforcement Learning
Nan Rosemary Ke
Amanpreet Singh
Ahmed Touati
Anirudh Goyal
Devi Parikh
Dhruv Batra
Probabilistic Planning with Sequential Monte Carlo methods
Alexandre Piché
Valentin Thomas
Cyril Ibrahim