Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Stéphanie Larocque
Alumni
Publications
Automated segmentation of cortical layers in BigBrain reveals divergent cortical and laminar thickness gradients in sensory and motor cortices.
Abstract Large-scale in vivo neuroimaging datasets offer new possibilities for reliable, well-powered measures of interregional structural d… (see more)ifferences and biomarkers of pathological changes in a wide variety of neurological and psychiatric diseases. However, so far studies have been structurally and functionally imprecise, being unable to relate pathological changes to specific cortical layers or neurobiological processes. We developed artificial neural networks to segment cortical and laminar surfaces in the BigBrain, a 3D histological model of the human brain. We sought to test whether previously-reported thickness gradients, as measured by MRI, in sensory and motor processing cortices, were present in a histological atlas of cortical thickness, and which cortical layers were contributing to these gradients. Identifying common gradients of cortical organisation enables us to meaningfully relate microstructural, macrostructural and functional cortical parameters. Analysis of thickness gradients across sensory cortices, using our fully segmented six-layered model, was consistent with MRI findings, showing increasing thickness moving up the processing hierarchy. In contrast, fronto-motor cortices showed the opposite pattern with changes in thickness of layers III, V and VI being the primary drivers of these gradients. As well as identifying key differences between sensory and motor gradients, our findings show how the use of this laminar atlas offers insights that will be key to linking single-neuron morphological changes, mesoscale cortical layers and macroscale cortical thickness.
Histological atlases of the cerebral cortex, such as those made famous by Brodmann and von Economo, are invaluable for understanding human b… (see more)rain microstructure and its relationship with functional organization in the brain. However, these existing atlases are limited to small numbers of manually annotated samples from a single cerebral hemisphere, measured from 2D histological sections. We present the first whole-brain quantitative 3D laminar atlas of the human cerebral cortex. This atlas was derived from a 3D histological model of the human brain at 20 micron isotropic resolution (BigBrain), using a convolutional neural network to segment, automatically, the cortical layers in both hemispheres. Our approach overcomes many of the historical challenges with measurement of histological thickness in 2D and the resultant laminar atlas provides an unprecedented level of precision and detail. We utilized this BigBrain cortical atlas to test whether previously reported thickness gradients, as measured by MRI in sensory and motor processing cortices, were present in a histological atlas of cortical thickness, and which cortical layers were contributing to these gradients. Cortical thickness increased across sensory processing hierarchies, primarily driven by layers III, V and VI. In contrast, fronto-motor cortices showed the opposite pattern, with decreases in total and pyramidal layer thickness. These findings illustrate how this laminar atlas will provide a link between single-neuron morphology, mesoscale cortical layering, macroscopic cortical thickness and, ultimately, functional neuroanatomy.
Histological atlases of the cerebral cortex, such as those made famous by Brodmann and von Economo, are invaluable for understanding human b… (see more)rain microstructure and its relationship with functional organization in the brain. However, these existing atlases are limited to small numbers of manually annotated samples from a single cerebral hemisphere, measured from 2D histological sections. We present the first whole-brain quantitative 3D laminar atlas of the human cerebral cortex. This atlas was derived from a 3D histological model of the human brain at 20 micron isotropic resolution (BigBrain), using a convolutional neural network to segment, automatically, the cortical layers in both hemispheres. Our approach overcomes many of the historical challenges with measurement of histological thickness in 2D and the resultant laminar atlas provides an unprecedented level of precision and detail. We utilized this BigBrain cortical atlas to test whether previously reported thickness gradients, as measured by MRI in sensory and motor processing cortices, were present in a histological atlas of cortical thickness, and which cortical layers were contributing to these gradients. Cortical thickness increased across sensory processing hierarchies, primarily driven by layers III, V and VI. In contrast, fronto-motor cortices showed the opposite pattern, with decreases in total and pyramidal layer thickness. These findings illustrate how this laminar atlas will provide a link between single-neuron morphology, mesoscale cortical layering, macroscopic cortical thickness and, ultimately, functional neuroanatomy.