Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Sandrine Bédard
Alumni
Publications
RootletSeg: Deep learning method for spinal rootlets segmentation across MRI contrasts
Purpose: To develop a deep learning method for the automatic segmentation of spinal nerve rootlets on various MRI scans. Material and Method… (see more)s: This retrospective study included MRI scans from two open-access and one private dataset, consisting of 3D isotropic 3T TSE T2-weighted (T2w) and 7T MP2RAGE (T1-weighted [T1w] INV1 and INV2, and UNIT1) MRI scans. A deep learning model, RootletSeg, was developed to segment C2-T1 dorsal and ventral spinal rootlets. Training was performed on 76 scans and testing on 17 scans. The Dice score was used to compare the model performance with an existing open-source method. Spinal levels derived from RootletSeg segmentations were compared with vertebral levels defined by intervertebral discs using Bland-Altman analysis. Results: The RootletSeg model developed on 93 MRI scans from 50 healthy adults (mean age, 28.70 years
Abstract Spinal cord functional MRI studies require precise localization of spinal levels for reliable voxel-wise group analyses. Traditiona… (see more)l template-based registration of the spinal cord uses intervertebral discs for alignment. However, substantial anatomical variability across individuals exists between vertebral and spinal levels. This study proposes a novel registration approach that leverages spinal nerve rootlets to improve alignment accuracy and reproducibility across individuals. We developed a registration method leveraging dorsal cervical rootlets segmentation and aligning them non-linearly with the PAM50 spinal cord template. Validation was performed on a multi-subject, multi-site dataset (n = 267, 44 sites) and a multi-subject dataset with various neck positions (n = 10, 3 sessions). We further validated the method on task-based functional MRI (n = 23) to compare group-level activation maps using rootlet-based registration to traditional disc-based methods. Rootlet-based registration showed superior alignment across individuals compared with the traditional disc-based method on n = 226 individuals, and on n = 176 individuals for morphological analyses. Notably, rootlet positions were more stable across neck positions. Group-level analysis of task-based functional MRI using rootlet-based registration increased Z scores and activation cluster size compared with disc-based registration (number of active voxels from 3292 to 7978). Rootlet-based registration enhances both inter- and intra-subject anatomical alignment and yields better spatial normalization for group-level fMRI analyses. Our findings highlight the potential of rootlet-based registration to improve the precision and reliability of spinal cord neuroimaging group analysis.
Spinal cord segmentation is clinically relevant and is notably used to compute spinal cord cross-sectional area (CSA) for the diagnosis and … (see more)monitoring of cord compression or neurodegenerative diseases such as multiple sclerosis. While several semi and automatic methods exist, one key limitation remains: the segmentation depends on the MRI contrast, resulting in different CSA across contrasts. This is partly due to the varying appearance of the boundary between the spinal cord and the cerebrospinal fluid that depends on the sequence and acquisition parameters. This contrast-sensitive CSA adds variability in multi-center studies where protocols can vary, reducing the sensitivity to detect subtle atrophies. Moreover, existing methods enhance the CSA variability by training one model per contrast, while also producing binary masks that do not account for partial volume effects. In this work, we present a deep learning-based method that produces soft segmentations of the spinal cord. Using the Spine Generic Public Database of healthy participants (
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controllin… (see more)g for sources of biological variation such as subject’s sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controllin… (see more)g for sources of biological variation such as subject’s sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.
The cross-sectional area (CSA) of the spinal cord (SC) computed from its segmentation is a relevant clinical biomarker for the diagnosis and… (see more) monitoring of cord compression and atrophy. One key limitation of existing automatic methods is that their SC segmentations depend on the MRI contrast, resulting in different CSA across contrasts. Furthermore, these methods rely on CNNs, leaving a gap in the literature for exploring the performance of modern deep learning (DL) architectures. In this study, we extend our recent work \cite{Bdard2023TowardsCS} by evaluating the contrast-agnostic SC segmentation capabilities of different classes of DL architectures, namely, ConvNeXt, vision transformers (ViTs), and hierarchical ViTs. We compared 7 different DL models using the open-source \textit{Spine Generic} Database of healthy participants
Objective: Automatic and robust characterization of spinal cord shape from MRI images is relevant to assess the severity of spinal cord comp… (see more)ression in degenerative cervical myelopathy (DCM) and to guide therapeutic strategy. Despite its popularity, the maximum spinal cord compression (MSCC) index has practical limitations to objectively assess the severity of cord compression. Firstly, it is computed by normalizing the anteroposterior cord diameter by that above and below the level of compression, but it does not account for the fact that the spinal cord itself varies in size along the superior-inferior axis, making this MSCC sensitive to the level of compression. Secondly, spinal cord shape varies across individuals, making MSCC also sensitive to the size and shape of every individual. Thirdly, MSCC is typically computed by the expert-rater on a single sagittal slice, which is time-consuming and prone to inter-rater variability. In this study, we propose a fully automatic pipeline to compute MSCC. Methods: We extended the traditional MSCC (based on the anteroposterior diameter) to other shape metrics (transverse diameter, area, eccentricity, and solidity), and proposed a normalization strategy using a database of healthy adults (n=203) to address the variability of the spinal cord anatomy between individuals. We validated the proposed method in a cohort of DCM patients (n=120) with manually derived morphometric measures and predicted the therapeutic decision (operative/conservative) using a stepwise binary logistic regression including demographics, clinical scores, and electrophysiological assessment. Results: The automatic and normalized MSCC measures significantly correlated with clinical scores and predicted the therapeutic decision with higher accuracy than the manual MSCC. Results show that the sensory dysfunction of the upper extremities (mJOA subscore), the presence of myelopathy and the proposed MRI-based normalized morphometric measures were significant predictors of the therapeutic decision. The model yielded an area under the curve of the receiver operating characteristic of 80%. Conclusion: The study introduced an automatic method for computation of normalized MSCC measures of cord compression from MRI scans, which is an important step towards better informed therapeutic decisions in DCM patients. The method is open-source and available in the Spinal Cord Toolbox v6.0.