Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Nissan Pow
Alumni
Publications
Training End-to-End Dialogue Systems with the Ubuntu Dialogue Corpus
In this paper, we construct and train end-to-end neural network-based dialogue systems using an updated version of the recent Ubuntu Dialogu… (see more)e Corpus, a dataset containing almost 1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words. This dataset is interesting because of its size, long context lengths, and technical nature; thus, it can be used to train large models directly from data with minimal feature engineering, which can be both time consuming and expensive. We provide baselines in two different environments: one where models are trained to maximize the log-likelihood of a generated utterance conditioned on the context of the conversation, and one where models are trained to select the correct next response from a list of candidate responses. These are both evaluated on a recall task that we call Next Utterance Classification (NUC), as well as other generation-specific metrics. Finally, we provide a qualitative error analysis to help determine the most promising directions for future research on the Ubuntu Dialogue Corpus, and for end-to-end dialogue systems in general.