Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Konstantinos Drossos
Alumni
Publications
MaD TwinNet: Masker-Denoiser Architecture with Twin Networks for Monaural Sound Source Separation
Monaural singing voice separation task focuses on the prediction of the singing voice from a single channel music mixture signal. Current st… (see more)ate of the art (SOTA) results in monaural singing voice separation are obtained with deep learning based methods. In this work we present a novel recurrent neural approach that learns long-term temporal patterns and structures of a musical piece. We build upon the recently proposed Masker-Denoiser (MaD) architecture and we enhance it with the Twin Networks, a technique to regularize a recurrent generative network using a backward running copy of the network. We evaluate our method using the Demixing Secret Dataset and we obtain an increment to signal-to-distortion ratio (SDR) of 0.37 dB and to signal-to-interference ratio (SIR) of 0.23 dB, compared to previous SOTA results.
2018-07-08
2018 International Joint Conference on Neural Networks (IJCNN) (published)
Singing voice separation based on deep learning relies on the usage of time-frequency masking. In many cases the masking process is not a le… (see more)arnable function or is not encapsulated into the deep learning optimization. Consequently, most of the existing methods rely on a post processing step using the generalized Wiener filtering. This work proposes a method that learns and optimizes (during training) a source-dependent mask and does not need the aforementioned post processing step. We introduce a recurrent inference algorithm, a sparse transformation step to improve the mask generation process, and a learned denoising filter. Obtained results show an increase of 0.49 dB for the signal to distortion ratio and 0.30 dB for the signal to interference ratio, compared to previous state-of-the-art approaches for monaural singing voice separation.
2018-04-15
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (published)