Portrait of Jake Kovalic is unavailable

Jake Kovalic

Alumni

Publications

HiPoNet: A Multi-View Simplicial Complex Network for High Dimensional Point-Cloud and Single-Cell Data
Hiren Madhu
Dhananjay Bhaskar
David R. Johnson
Christopher Tape
Ian Adelstein
Rex Ying
Michael Perlmutter
In this paper, we propose HiPoNet, an end-to-end differentiable neural network for regression, classification, and representation learning o… (see more)n high-dimensional point clouds. Our work is motivated by single-cell data which can have very high-dimensionality --exceeding the capabilities of existing methods for point clouds which are mostly tailored for 3D data. Moreover, modern single-cell and spatial experiments now yield entire cohorts of datasets (i.e., one data set for every patient), necessitating models that can process large, high-dimensional point-clouds at scale. Most current approaches build a single nearest-neighbor graph, discarding important geometric and topological information. In contrast, HiPoNet models the point-cloud as a set of higher-order simplicial complexes, with each particular complex being created using a reweighting of features. This method thus generates multiple constructs corresponding to different views of high-dimensional data, which in biology offers the possibility of disentangling distinct cellular processes. It then employs simplicial wavelet transforms to extract multiscale features, capturing both local and global topology from each view. We show that geometric and topological information is preserved in this framework both theoretically and empirically. We showcase the utility of HiPoNet on point-cloud level tasks, involving classification and regression of entire point-clouds in data cohorts. Experimentally, we find that HiPoNet outperforms other point-cloud and graph-based models on single-cell data. We also apply HiPoNet to spatial transcriptomics datasets using spatial coordinates as one of the views. Overall, HiPoNet offers a robust and scalable solution for high-dimensional data analysis.
HiPoNet: A Topology-Preserving Multi-View Neural Network For High Dimensional Point Cloud and Single-Cell Data
Hiren Madhu
Dhananjay Bhaskar
Dave Johnson
Rex Ying
Christopher Tape
Ian Adelstein
Michael Perlmutter
In this paper, we propose HiPoNet, an end-to-end differentiable neural network for regression, classification, and representation learning o… (see more)n high-dimensional point clouds. Single-cell data can have high dimensionality exceeding the capabilities of existing methods point cloud tailored for 3D data. Moreover, modern single-cell and spatial experiments now yield entire cohorts of datasets (i.e. one on every patient), necessitating models that can process large, high-dimensional point clouds at scale. Most current approaches build a single nearest-neighbor graph, discarding important geometric information. In contrast, HiPoNet forms higher-order simplicial complexes through learnable feature reweighting, generating multiple data views that disentangle distinct biological processes. It then employs simplicial wavelet transforms to extract multi-scale features - capturing both local and global topology. We empirically show that these components preserve topological information in the learned representations, and that HiPoNet significantly outperforms state-of-the-art point-cloud and graph-based models on single cell. We also show an application of HiPoNet on spatial transcriptomics datasets using spatial co-ordinates as one of the views. Overall, HiPoNet offers a robust and scalable solution for high-dimensional data analysis.
HiPoNet: A Topology-Preserving Multi-View Neural Network For High Dimensional Point Cloud and Single-Cell Data
Hiren Madhu
Dhananjay Bhaskar
David R. Johnson
Rex Ying
Christopher Tape
Ian Adelstein
Michael Perlmutter
In this paper, we propose HiPoNet, an end-to-end differentiable neural network for regression, classification, and representation learning o… (see more)n high-dimensional point clouds. Single-cell data can have high dimensionality exceeding the capabilities of existing methods point cloud tailored for 3D data. Moreover, modern single-cell and spatial experiments now yield entire cohorts of datasets (i.e. one on every patient), necessitating models that can process large, high-dimensional point clouds at scale. Most current approaches build a single nearest-neighbor graph, discarding important geometric information. In contrast, HiPoNet forms higher-order simplicial complexes through learnable feature reweighting, generating multiple data views that disentangle distinct biological processes. It then employs simplicial wavelet transforms to extract multi-scale features - capturing both local and global topology. We empirically show that these components preserve topological information in the learned representations, and that HiPoNet significantly outperforms state-of-the-art point-cloud and graph-based models on single cell. We also show an application of HiPoNet on spatial transcriptomics datasets using spatial co-ordinates as one of the views. Overall, HiPoNet offers a robust and scalable solution for high-dimensional data analysis.