Portrait of Francesco Paissan is unavailable

Francesco Paissan

Alumni

Publications

Open-Source Conversational AI with SpeechBrain 1.0
Adel Moumen
Sylvain de Langen
Peter William VanHarn Plantinga
Yingzhi Wang
Zeyu Zhao
Shucong Zhang
Georgios Karakasidis
Pierre Champion
Aku Rouhe
Rudolf Braun … (see 11 more)
Florian Mai
Juan Pablo Zuluaga
Seyed Mahed Mousavi
Andreas Nautsch
Xuechen Liu
Sangeet Sagar
Jarod Duret
Salima Mdhaffar
G. Laperriere
Yannick Estève
SpeechBrain is an open-source Conversational AI toolkit based on PyTorch, focused particularly on speech processing tasks such as speech rec… (see more)ognition, speech enhancement, speaker recognition, text-to-speech, and much more. It promotes transparency and replicability by releasing both the pre-trained models and the complete"recipes"of code and algorithms required for training them. This paper presents SpeechBrain 1.0, a significant milestone in the evolution of the toolkit, which now has over 200 recipes for speech, audio, and language processing tasks, and more than 100 models available on Hugging Face. SpeechBrain 1.0 introduces new technologies to support diverse learning modalities, Large Language Model (LLM) integration, and advanced decoding strategies, along with novel models, tasks, and modalities. It also includes a new benchmark repository, offering researchers a unified platform for evaluating models across diverse tasks.
Posthoc Interpretation via Quantization
In this paper, we introduce a new approach, called Posthoc Interpretation via Quantization (PIQ), for interpreting decisions made by trained… (see more) classifiers. Our method utilizes vector quantization to transform the representations of a classifier into a discrete, class-specific latent space. The class-specific codebooks act as a bottleneck that forces the interpreter to focus on the parts of the input data deemed relevant by the classifier for making a prediction. Our model formulation also enables learning concepts by incorporating the supervision of pretrained annotation models such as state-of-the-art image segmentation models. We evaluated our method through quantitative and qualitative studies involving black-and-white images, color images, and audio. As a result of these studies we found that PIQ generates interpretations that are more easily understood by participants to our user studies when compared to several other interpretation methods in the literature.