Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Christopher Beckham
Alumni
Publications
Deep Learning for Detecting Extreme Weather Patterns
Deep neural networks excel at learning the training data, but often provide incorrect and confident predictions when evaluated on slightly d… (see more)ifferent test examples. This includes distribution shifts, outliers, and adversarial examples. To address these issues, we propose Manifold Mixup, a simple regularizer that encourages neural networks to predict less confidently on interpolations of hidden representations. Manifold Mixup leverages semantic interpolations as additional training signal, obtaining neural networks with smoother decision boundaries at multiple levels of representation. As a result, neural networks trained with Manifold Mixup learn class-representations with fewer directions of variance. We prove theory on why this flattening happens under ideal conditions, validate it on practical situations, and connect it to previous works on information theory and generalization. In spite of incurring no significant computation and being implemented in a few lines of code, Manifold Mixup improves strong baselines in supervised learning, robustness to single-step adversarial attacks, and test log-likelihood.
2019-05-24
Proceedings of the 36th International Conference on Machine Learning (published)
In this paper, we explore new approaches to combining information encoded within the learned representations of auto-encoders. We explore mo… (see more)dels that are capable of combining the attributes of multiple inputs such that a resynthesised output is trained to fool an adversarial discriminator for real versus synthesised data. Furthermore, we explore the use of such an architecture in the context of semi-supervised learning, where we learn a mixing function whose objective is to produce interpolations of hidden states, or masked combinations of latent representations that are consistent with a conditioned class label. We show quantitative and qualitative evidence that such a formulation is an interesting avenue of research.
In this paper, we explore new approaches to combining information encoded within the learned representations of autoencoders. We explore mod… (see more)els that are capable of combining the attributes of multiple inputs such that a resynthesised output is trained to fool an adversarial discriminator for real versus synthesised data. Furthermore, we explore the use of such an architecture in the context of semi-supervised learning, where we learn a mixing function whose objective is to produce interpolations of hidden states, or masked combinations of latent representations that are consistent with a conditioned class label. We show quantitative and qualitative evidence that such a formulation is an interesting avenue of research.
Deep networks often perform well on the data manifold on which they are trained, yet give incorrect (and often very confident) answers when … (see more)evaluated on points from off of the training distribution. This is exemplified by the adversarial examples phenomenon but can also be seen in terms of model generalization and domain shift. We propose Manifold Mixup which encourages the network to produce more reasonable and less confident predictions at points with combinations of attributes not seen in the training set. This is accomplished by training on convex combinations of the hidden state representations of data samples. Using this method, we demonstrate improved semi-supervised learning, learning with limited labeled data, and robustness to adversarial examples. Manifold Mixup requires no (significant) additional computation. Analytical experiments on both real data and synthetic data directly support our hypothesis for why the Manifold Mixup method improves results.
We present an unsupervised approach for learning to estimate three dimensional (3D) facial structure from a single image while also predicti… (see more)ng 3D viewpoint transformations that match a desired pose and facial geometry. We achieve this by inferring the depth of facial keypoints of an input image in an unsupervised manner, without using any form of ground-truth depth information. We show how it is possible to use these depths as intermediate computations within a new backpropable loss to predict the parameters of a 3D affine transformation matrix that maps inferred 3D keypoints of an input face to the corresponding 2D keypoints on a desired target facial geometry or pose. Our resulting approach, called DepthNets, can therefore be used to infer plausible 3D transformations from one face pose to another, allowing faces to be frontalized, transformed into 3D models or even warped to another pose and facial geometry. Lastly, we identify certain shortcomings with our formulation, and explore adversarial image translation techniques as a post-processing step to re-synthesize complete head shots for faces re-targeted to different poses or identities.
Probability distributions produced by the cross-entropy loss for ordinal classification problems can possess undesired properties. We propos… (see more)e a straightforward technique to constrain discrete ordinal probability distributions to be unimodal via a combination of the Poisson probability mass function and the softmax nonlinearity. We evaluate this approach on two large ordinal image datasets and obtain promising results.
2017-07-17
Proceedings of the 34th International Conference on Machine Learning (published)