Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Spatial transcriptomics has revolutionized our ability to characterize tissues and diseases by contextualizing gene expression with spatial … (see more)organization. Available methods require researchers to either train a model using histology-based annotations or use annotation-free clustering approaches to uncover spatial domains. However, few methods provide researchers with a way to jointly analyze spatial data from both annotation-free and annotation-guided perspectives using consistent inductive biases and levels of interpretability. A single framework with consistent inductive biases ensures coherence and transferability across tasks, reducing the risks of conflicting assumptions. To this end, we propose the Spatial Topic Model (SpaTM), a topic-modeling framework capable of annotation-guided and annotation-free analysis of spatial transcriptomics data. SpaTM can be used to learn gene programs that represent histology-based annotations while providing researchers with the ability to infer spatial domains with an annotation-free approach if manual annotations are limited or noisy. We demonstrate SpaTM’s interpretability with its use of topic mixtures to represent cell states and transcriptional programs and how its intuitive framework facilitates the integration of annotation-guided and annotation-free analyses of spatial data with downstream analyses such as cell type deconvolution. Finally, we demonstrate how both approaches can be used to extend the analysis of large-scale snRNA-seq atlases with the inference of cell proximity and spatial annotations in human brains with Major Depressive Disorder.