Portrait de Chuqin Geng n'est pas disponible

Chuqin Geng

Doctorat - McGill University
Superviseur⋅e principal⋅e

Publications

Learning Minimal NAP Specifications for Neural Network Verification
Chuqin Geng
Zhaoyue Wang
Haolin Ye
Saifei Liao
Specifications play a crucial role in neural network verification. They define the precise input regions we aim to verify, typically represe… (voir plus)nted as L-infinity norm balls. While recent research suggests using neural activation patterns (NAPs) as specifications for verifying unseen test set data, it focuses on computing the most refined NAPs, often limited to very small regions in the input space. In this paper, we study the following problem: Given a neural network, find a minimal (coarsest) NAP that is sufficient for formal verification of the network's robustness. Finding the minimal NAP specification not only expands verifiable bounds but also provides insights into which neurons contribute to the model's robustness. To address this problem, we propose several exact and approximate approaches. Our exact approaches leverage the verification tool to find minimal NAP specifications in either a deterministic or statistical manner. Whereas the approximate methods efficiently estimate minimal NAPs using adversarial examples and local gradients, without making calls to the verification tool. This allows us to inspect potential causal links between neurons and the robustness of state-of-the-art neural networks, a task for which existing verification frameworks fail to scale. Our experimental results suggest that minimal NAP specifications require much smaller fractions of neurons compared to the most refined NAP specifications, yet they can significantly expand the verifiable boundaries to several orders of magnitude larger.
SAT-DIFF: A Tree Diffing Framework Using SAT Solving
Chuqin Geng
Haolin Ye
Yihan Zhang
Brigitte Pientka
Computing differences between tree-structured data is a critical but challenging problem in software analysis. In this paper, we propose a n… (voir plus)ovel tree diffing approach called SatDiff, which reformulates the structural diffing problem into a MaxSAT problem. By encoding the necessary transformations from the source tree to the target tree, SatDiff generates correct, minimal, and type safe low-level edit scripts with formal guarantees. We then synthesize concise high-level edit scripts by effectively merging low-level edits in the appropriate topological order. Our empirical results demonstrate that SatDiff outperforms existing heuristic-based approaches by a significant margin in terms of conciseness while maintaining a reasonable runtime.
Scalar Invariant Networks with Zero Bias
Chuqin Geng
Xiaojie Xu
Haolin Ye
Just like weights, bias terms are the learnable parameters of many popular machine learning models, including neural networks. Biases are th… (voir plus)ought to enhance the representational power of neural networks, enabling them to solve a variety of tasks in computer vision. However, we argue that biases can be disregarded for some image-related tasks such as image classification, by considering the intrinsic distribution of images in the input space and desired model properties from first principles. Our findings suggest that zero-bias neural networks can perform comparably to biased networks for practical image classification tasks. We demonstrate that zero-bias neural networks possess a valuable property called scalar (multiplication) invariance. This means that the prediction of the network remains unchanged when the contrast of the input image is altered. We extend scalar invariance to more general cases, enabling formal verification of certain convex regions of the input space. Additionally, we prove that zero-bias neural networks are fair in predicting the zero image. Unlike state-of-the-art models that may exhibit bias toward certain labels, zero-bias networks have uniform belief in all labels. We believe dropping bias terms can be considered as a geometric prior in designing neural network architecture for image classification, which shares the spirit of adapting convolutions as the transnational invariance prior. The robustness and fairness advantages of zero-bias neural networks may also indicate a promising path towards trustworthy and ethical AI.
TorchProbe: Fuzzing Dynamic Deep Learning Compilers
Qidong Su
Chuqin Geng
Gennady G. Pekhimenko
Static and dynamic computational graphs represent two distinct approaches to constructing deep learning frameworks. The former prioritizes c… (voir plus)ompiler-based optimizations, while the latter focuses on programmability and user-friendliness. The recent release of PyTorch 2.0, which supports compiling arbitrary deep learning programs in Python, signifies a new direction in the evolution of deep learning infrastructure to incorporate compiler techniques in a more dynamic manner and support more dynamic language features like dynamic control flows and closures. Given PyTorch's seamless integration with Python, its compiler aims to support arbitrary deep learning code written in Python. However, the inherent dynamism of Python poses challenges to the completeness and robustness of the compiler. While recent research has introduced fuzzing to test deep learning compilers, there is still a lack of comprehensive analysis on how to test dynamic features. To address this issue, we propose several code transformations to generate test cases involving dynamic features. These transformations preserve the program's semantics, ensuring that any discrepancy between the transformed and original programs indicates the presence of a bug. Through our approach, we have successfully identified twenty previously unknown bugs in the PyTorch compiler and its underlying tensor compiler Triton.
Can ChatGPT Pass An Introductory Level Functional Language Programming Course?
Chuqin Geng
Yihan Zhang
Brigitte Pientka
The recent introduction of ChatGPT has drawn significant attention from both industry and academia due to its impressive capabilities in sol… (voir plus)ving a diverse range of tasks, including language translation, text summarization, and computer programming. Its capability for writing, modifying, and even correcting code together with its ease of use and access is already dramatically impacting computer science education. This paper aims to explore how well ChatGPT can perform in an introductory-level functional language programming course. In our systematic evaluation, we treated ChatGPT as one of our students and demonstrated that it can achieve a grade B- and its rank in the class is 155 out of 314 students overall. Our comprehensive evaluation provides valuable insights into ChatGPT's impact from both student and instructor perspectives. Additionally, we identify several potential benefits that ChatGPT can offer to both groups. Overall, we believe that this study significantly clarifies and advances our understanding of ChatGPT's capabilities and potential impact on computer science education.
Identifying Different Student Clusters in Functional Programming Assignments: From Quick Learners to Struggling Students
Chuqin Geng
Wenwen Xu
Yingjie Xu
Brigitte Pientka
Instructors and students alike are often focused on the grade in programming assignments as a key measure of how well a student is mastering… (voir plus) the material and whether a student is struggling. This can be, however, misleading. Especially when students have access to auto-graders, their grades may be heavily skewed. In this paper, we analyze student assignment submission data collected from a functional programming course taught at McGill university incorporating a wide range of features. In addition to the grade, we consider activity time data, time spent, and the number of static errors. This allows us to identify four clusters of students: "Quick-learning", "Hardworking", "Satisficing", and "Struggling" through cluster algorithms. We then analyze how work habits, working duration, the range of errors, and the ability to fix errors impact different clusters of students. This structured analysis provides valuable insights for instructors to actively help different types of students and emphasize different aspects of their overall course design. It also provides insights for students themselves to understand which aspects they still struggle with and allows them to seek clarification and adjust their work habits.
Towards Reliable Neural Specifications
Chuqin Geng
Nham Le
Xiaojie Xu
Zhaoyue Wang
Arie Gurfinkel
Towards Reliable Neural Specifications
Chuqin Geng
Nham Le
Xiaojie Xu
Zhaoyue Wang
Arie Gurfinkel
Novice Type Error Diagnosis with Natural Language Models
Chuqin Geng
Haolin Ye
Yixuan Li
Tianyu Han
Brigitte Pientka
Strong static type systems help programmers eliminate many errors without much burden of supplying type annotations. However, this flexibili… (voir plus)ty makes it highly non-trivial to diagnose ill-typed programs, especially for novice programmers. Compared to classic constraint solving and optimization-based approaches, the data-driven approach has shown great promise in identifying the root causes of type errors with higher accuracy. Instead of relying on hand-engineered features, this work explores natural language models for type error localization, which can be trained in an end-to-end fashion without requiring any features. We demonstrate that, for novice type error diagnosis, the language model-based approach significantly outperforms the previous state-of-the-art data-driven approach. Specifically, our model could predict type errors correctly 62% of the time, outperforming the state-of-the-art Nate's data-driven model by 11%, in a more rigorous accuracy metric. Furthermore, we also apply structural probes to explain the performance difference between different language models.