Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Clinical Care Trajectory Assessment of Children with Congenital Diaphragmatic Hernia and Neurodevelopmental Impairment
In a data-driven world, two prominent research problems are record linkage and data privacy, among others. Record linkage is essential for i… (see more)mproving decision-making by integrating information of the same entities from different sources. On the other hand, data privacy research seeks to balance the need to extract accurate insights from data with the imperative to protect the privacy of the entities involved. Inevitably, data privacy issues arise in the context of record linkage. This article identifies two complementary aspects at the intersection of these two fields: (1) how to ensure privacy during record linkage and (2) how to mitigate privacy risks when releasing the analysis results after record linkage. We specifically discuss privacy-preserving record linkage, differentially private regression, and related topics.
Large Language Models (LLMs) have shown their ability to improve the performance of speech recognizers by effectively rescoring the n-best h… (see more)ypotheses generated during the beam search process. However, the best way to exploit recent generative instruction-tuned LLMs for hypothesis rescoring is still unclear. This paper proposes a novel method that uses instruction-tuned LLMs to dynamically expand the n-best speech recognition hypotheses with new hypotheses generated through appropriately-prompted LLMs. Specifically, we introduce a new zero-shot method for ASR n-best rescoring, which combines confidence scores, LLM sequence scoring, and prompt-based hypothesis generation. We compare Llama-3-Instruct, GPT-3.5 Turbo, and GPT-4 Turbo as prompt-based generators with Llama-3 as sequence scorer LLM. We evaluated our approach using different speech recognizers and observed significant relative improvement in the word error rate (WER) ranging from 5% to 25%.
Large Language Models (LLMs) have shown their ability to improve the performance of speech recognizers by effectively rescoring the n-best h… (see more)ypotheses generated during the beam search process. However, the best way to exploit recent generative instruction-tuned LLMs for hypothesis rescoring is still unclear. This paper proposes a novel method that uses instruction-tuned LLMs to dynamically expand the n-best speech recognition hypotheses with new hypotheses generated through appropriately-prompted LLMs. Specifically, we introduce a new zero-shot method for ASR n-best rescoring, which combines confidence scores, LLM sequence scoring, and prompt-based hypothesis generation. We compare Llama-3-Instruct, GPT-3.5 Turbo, and GPT-4 Turbo as prompt-based generators with Llama-3 as sequence scorer LLM. We evaluated our approach using different speech recognizers and observed significant relative improvement in the word error rate (WER) ranging from 5% to 25%.
Inflatable multistable materials have significantly advanced the design of shape‐preserving soft robotic arms, offering substantial benefi… (see more)ts in terms of shape adaptability, energy efficiency, and safety, ensuring operational reliability even in the event of sudden power loss. However, existing strategies for realizing multistable arms often limit themselves to a single mode of multistability, commonly with rotationally symmetric designs favoring extension stability and asymmetric designs inducing bending stability. To address the limitation, this study introduces a pioneering platform termed multimodal multistability that utilizes geometrical frustration. A single cylindrical symmetric cell, designed for extension bistability, could achieve frustrated multistable states in bending by controlling the cell with multiple degrees of freedom incorporated pneumatic actuator. This platform extends the spectrum of attainable stable trajectories while preserving essential attributes of arms, such as load‐bearability, programmability, and reversibility of shape changes. Leveraging a pneumatic system with four degrees of freedom for pressure control, not only enables capturing previously unexplored stable configurations in mechanical metastructures but also allows for the control of their deformation modes. With applications spanning space exploration, medical instruments, and rescue missions, the multimodal multistability promises unparalleled flexibility and efficiency in the design and operation of soft robots.
Exploration in unknown and unstructured environments is a pivotal requirement for robotic applications. A robot’s exploration behavior can… (see more) be inherently affected by the performance of its Simultaneous Localization and Mapping (SLAM) subsystem, although SLAM and exploration are generally studied separately. In this paper, we formulate exploration as an active mapping problem and extend it with semantic information. We introduce a novel active metric-semantic SLAM approach, leveraging recent research advances in information theory and spectral graph theory: we combine semantic mutual information and the connectivity metrics of the underlying pose graph of the SLAM subsystem. We use the resulting utility function to evaluate different trajectories to select the most favorable strategy during exploration. Exploration and SLAM metrics are analyzed in experiments. Running our algorithm on the Habitat dataset, we show that, while maintaining efficiency close to the state-of-the-art exploration methods, our approach effectively increases the performance of metric-semantic SLAM with a 21% reduction in average map error and a 9% improvement in average semantic classification accuracy.