Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Yikang Shen
Alumni
Publications
Scaling Stick-Breaking Attention: An Efficient Implementation and In-depth Study
The self-attention mechanism traditionally relies on the softmax operator, necessitating positional embeddings like RoPE, or position biases… (see more) to account for token order.
But current methods using still face length generalisation challenges.
We investigate an alternative attention mechanism based on the stick-breaking process in larger scale settings.
The method works as follows: For each token before the current, we determine a break point, which represents the proportion of the stick, the weight of the attention, to allocate to the current token.
We repeat this on the remaining stick, until all tokens are allocated a weight, resulting in a sequence of attention weights.
This process naturally incorporates recency bias, which has linguistic motivations for grammar parsing (Shen et al., 2017).
We study the implications of replacing the conventional softmax-based attention mechanism with stick-breaking attention.
We then discuss implementation of numerically stable stick-breaking attention and adapt Flash Attention to accommodate this mechanism.
When used as a drop-in replacement for current softmax+RoPE attention systems, we find that stick-breaking attention performs competitively with current methods on length generalisation and downstream tasks.
Stick-breaking also performs well at length generalisation, allowing a model trained with
The self-attention mechanism traditionally relies on the softmax operator, necessitating positional embeddings like RoPE, or position biases… (see more) to account for token order.
But current methods using still face length generalisation challenges.
We investigate an alternative attention mechanism based on the stick-breaking process in larger scale settings.
The method works as follows: For each token before the current, we determine a break point, which represents the proportion of the stick, the weight of the attention, to allocate to the current token.
We repeat this on the remaining stick, until all tokens are allocated a weight, resulting in a sequence of attention weights.
This process naturally incorporates recency bias, which has linguistic motivations for grammar parsing (Shen et al., 2017).
We study the implications of replacing the conventional softmax-based attention mechanism with stick-breaking attention.
We then discuss implementation of numerically stable stick-breaking attention and adapt Flash Attention to accommodate this mechanism.
When used as a drop-in replacement for current softmax+RoPE attention systems, we find that stick-breaking attention performs competitively with current methods on length generalisation and downstream tasks.
Stick-breaking also performs well at length generalisation, allowing a model trained with
ScatterMoE is an implementation of Sparse Mixture-of-Experts (SMoE) on GPUs. ScatterMoE builds upon techniques in existing implementations, … (see more)and overcoming some of the current limitations to improve batched inference, training speed, and memory footprint. This implementation achieves this by avoiding padding and making excessive copies of the input. We also fuse expert linear transforms and reordering operations with ParallelLinear, a module that can be used to extend the concept of SMoEs. We benchmark our implementation against Megablocks, and show that it enables a higher throughput and lower memory footprint. We also show how ParallelLinear enables extension of the Mixture-of-Experts concept by demonstrating with an implementation of Mixture-of-Attention.
We present ScatterMoE, an implementation of Sparse Mixture-of-Experts (SMoE) on GPUs. ScatterMoE builds upon existing implementations, and o… (see more)vercoming some of the limitations to improve inference and training speed, and memory footprint. This implementation achieves this by avoiding padding and making excessive copies of the input. We introduce ParallelLinear, the main component we use to build our implementation and the various kernels used to speed up the operation. We benchmark our implementation against Megablocks, and show that it enables a higher throughput and lower memory footprint. We also show how ParallelLinear enables extension of the Mixture-of-Experts concept by demonstrating with an implementation of Mixture of Attention.
The Universal Transformer (UT) is a variant of the Transformer that shares parameters across its layers and is Turing-complete under certain… (see more) assumptions.
Empirical evidence also shows that UTs have better compositional generalization than Vanilla Transformers (VTs) in formal language tasks.
The parameter-sharing also affords it better parameter efficiency than VTs.
Despite its many advantages, most state-of-the-art NLP systems use VTs as their backbone model instead of UTs.
This is mainly because scaling UT parameters is more compute and memory intensive than scaling up a VT.
This paper proposes the Sparse Universal Transformer (SUT), which leverages Sparse Mixture of Experts (SMoE) to reduce UT's computation complexity while retaining its parameter efficiency and generalization ability.
Experiments show that SUT combines the best of both worlds, achieving strong generalization results on formal language tasks (Logical inference and CFQ) and impressive parameter and computation efficiency on standard natural language benchmarks like WMT'14.
Large Language Models (LLMs) have gained the ability to assimilate human knowledge and facilitate natural language interactions with both hu… (see more)mans and other LLMs. However, despite their impressive achievements, LLMs have not made significant advancements in the realm of graph machine learning. This limitation arises because graphs encapsulate distinct relational data, making it challenging to transform them into natural language that LLMs understand. In this paper, we bridge this gap with a novel framework, GraphText, that translates graphs into natural language. GraphText derives a graph-syntax tree for each graph that encapsulates both the node attributes and inter-node relationships. Traversal of the tree yields a graph text sequence, which is then processed by an LLM to treat graph tasks as text generation tasks. Notably, GraphText offers multiple advantages. It introduces training-free graph reasoning: even without training on graph data, GraphText with ChatGPT can achieve on par with, or even surpassing, the performance of supervised-trained graph neural networks through in-context learning (ICL). Furthermore, GraphText paves the way for interactive graph reasoning, allowing both humans and LLMs to communicate with the model seamlessly using natural language. These capabilities underscore the vast, yet-to-be-explored potential of LLMs in the domain of graph machine learning.