Portrait of Nima Akbarzadeh is unavailable

Nima Akbarzadeh

Postdoctorate - HEC Montréal
Supervisor
Research Topics
Reinforcement Learning

Publications

Maintenance of a collection of machines under partial observability: Indexability and computation of Whittle index
We consider the problem of scheduling maintenance for a collection of machines under partial observations when the state of each machine det… (see more)eriorates stochastically in a Markovian manner. We consider two observational models: first, the state of each machine is not observable at all, and second, the state of each machine is observable only if a service-person visits them. The agent takes a maintenance action, e.g., machine replacement, if he is chosen for the task. We model both problems as restless multi-armed bandit problem and propose the Whittle index policy for scheduling the visits. We show that both models are indexable. For the first model, we derive a closed-form expression for the Whittle index. For the second model, we propose an efficient algorithm to compute the Whittle index by exploiting the qualitative properties of the optimal policy. We present detailed numerical experiments which show that for multiple instances of the model, the Whittle index policy outperforms myopic policy and can be close-to-optimal in different setups.
Restless bandits: indexability and computation of Whittle index
Restless bandits are a class of sequential resource allocation problems concerned with allocating one or more resources among several altern… (see more)ative processes where the evolution of the process depends on the resource allocated to them. Such models capture the fundamental trade-offs between exploration and exploitation. In 1988, Whittle developed an index heuristic for restless bandit problems which has emerged as a popular solution approach due to its simplicity and strong empirical performance. The Whittle index heuristic is applicable if the model satisfies a technical condition known as indexability. In this paper, we present two general sufficient conditions for indexability and identify simpler to verify refinements of these conditions. We then present a general algorithm to compute Whittle index for indexable restless bandits. Finally, we present a detailed numerical study which affirms the strong performance of the Whittle index heuristic.
Restless bandits with controlled restarts: Indexability and computation of Whittle index
Motivated by applications in machine repair, queueing, surveillance, and clinic care, we consider a scheduling problem where a decision make… (see more)r can reset m out of n Markov processes at each time. Processes that are reset, restart according to a known probability distribution and processes that are not reset, evolve in a Markovian manner. Due to the high complexity of finding an optimal policy, such scheduling problems are often modeled as restless bandits. We show that the model satisfies a technical condition known as indexability. For indexable restless bandits, the Whittle index policy, which computes a function known as Whittle index for each process and resets the m processes with the lowest index, is known to be a good heuristic. The Whittle index is computed by solving an auxiliary Markov decision problem for each arm. When the optimal policy for this auxiliary problem is threshold based, we use ideas from renewal theory to derive closed form expression for the Whittle index. We present detailed numerical experiments which suggest that Whittle index policy performs close to the optimal policy and performs significantly better than myopic policy, which is a commonly used heuristic.
Dynamic spectrum access under partial observations: A restless bandit approach
We consider a communication system where multiple unknown channels are available for transmission. Each channel is a channel with state whic… (see more)h evolves in a Markov manner. The transmitter has to select L channels to use and also decide the resources (e.g., power, rate, etc.) to use for each of the selected channels. It observes the state of the channels it uses and receives no feedback on the state of the other channels. We model this problem as a partially observable Markov decision process and obtain a simplified belief state. We show that the optimal resource allocation policy can be identified in closed form. Once the optimal resource allocation policy is fixed, choosing the channel scheduling policy may be viewed as a restless bandit. We present an efficient algorithm to check indexability and compute the Whittle index for each channel. When the model is indexable, the Whittle index policy, which transmits over the L channels with the smallest Whittle indices, is an attractive heuristic policy.