Portrait of Kian Kenyon-Dean is unavailable

Kian Kenyon-Dean

Alumni

Publications

Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology
Oren Kraus
Saber Saberian
Maryam Fallah
Peter McLean
Jess Leung
Vasudev Sharma
Ayla Khan
Jia Balakrishnan
Safiye Celik
Maciej Sypetkowski
Chi Vicky Cheng
Kristen Morse
Maureen Makes
Ben Mabey
Berton Earnshaw
Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology
Oren Kraus
Saber Saberian
Maryam Fallah
Peter McLean
Jess Leung
Vasudev Sharma
Ayla Khan
Jia Balakrishnan
Safiye Celik
Maciej Sypetkowski
Chi Vicky Cheng
Kristen Morse
Maureen Makes
Ben Mabey
Berton Earnshaw
Featurizing microscopy images for use in biological research remains a significant challenge, especially for large-scale experiments spannin… (see more)g millions of images. This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs) when training with increasingly larger model backbones and microscopy datasets. Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases. Additionally, we develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time. We demonstrate that CA-MAEs effectively generalize by inferring and evaluating on a microscopy image dataset (JUMP-CP) generated under different experimental conditions with a different channel structure than our pretraining data (RPI-93M). Our findings motivate continued research into scaling self-supervised learning on microscopy data in order to create powerful foundation models of cellular biology that have the potential to catalyze advancements in drug discovery and beyond. Relevant code and select models released with this work can be found at: https://github.com/recursionpharma/maes_microscopy.
Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology
Oren Kraus
Saber Saberian
Maryam Fallah
Peter McLean
Jess Leung
Vasudev Sharma
Ayla Khan
Jia Balakrishnan
Safiye Celik
Maciej Sypetkowski
Chi Vicky Cheng
Kristen Morse
Maureen Makes
Ben Mabey
Berton Earnshaw
Featurizing microscopy images for use in biological research remains a significant challenge, especially for large-scale experiments spannin… (see more)g millions of images. This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs) when training with increasingly larger model backbones and microscopy datasets. Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases. Additionally, we develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time. We demonstrate that CA-MAEs effectively generalize by inferring and evaluating on a microscopy image dataset (JUMP-CP) generated under different experimental conditions with a different channel structure than our pretraining data (RPI-93M). Our findings motivate continued research into scaling self-supervised learning on microscopy data in order to create powerful foundation models of cellular biology that have the potential to catalyze advancements in drug discovery and beyond. Relevant code and select models released with this work can be found at: https://github.com/recursionpharma/maes_microscopy.
Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology
Oren Kraus
Saber Saberian
Maryam Fallah
Peter McLean
Jess Leung
Vasudev Sharma
Ayla Khan
Jia Balakrishnan
Safiye Celik
Maciej Sypetkowski
Chi Vicky Cheng
Kristen Morse
Maureen Makes
Ben Mabey
Berton Earnshaw
Featurizing microscopy images for use in biological research remains a significant challenge, especially for large-scale experiments spannin… (see more)g millions of images. This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs) when training with increasingly larger model backbones and microscopy datasets. Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases. Additionally, we develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time. We demonstrate that CA-MAEs effectively generalize by inferring and evaluating on a microscopy image dataset (JUMP-CP) generated under different experimental conditions with a different channel structure than our pretraining data (RPI-93M). Our findings motivate continued research into scaling self-supervised learning on microscopy data in order to create powerful foundation models of cellular biology that have the potential to catalyze advancements in drug discovery and beyond. Relevant code and select models released with this work can be found at: https://github.com/recursionpharma/maes_microscopy.
Learning Efficient Task-Specific Meta-Embeddings with Word Prisms
Word embeddings are trained to predict word cooccurrence statistics, which leads them to possess different lexical properties (syntactic, se… (see more)mantic, etc.) depending on the notion of context defined at training time. These properties manifest when querying the embedding space for the most similar vectors, and when used at the input layer of deep neural networks trained to solve downstream NLP problems. Meta-embeddings combine multiple sets of differently trained word embeddings, and have been shown to successfully improve intrinsic and extrinsic performance over equivalent models which use just one set of source embeddings. We introduce word prisms: a simple and efficient meta-embedding method that learns to combine source embeddings according to the task at hand. Word prisms learn orthogonal transformations to linearly combine the input source embeddings, which allows them to be very efficient at inference time. We evaluate word prisms in comparison to other meta-embedding methods on six extrinsic evaluations and observe that word prisms offer improvements in performance on all tasks.
Deconstructing Word Embedding Algorithms
Edward Daniel Newell
Deconstructing and reconstructing word embedding algorithms
Edward Daniel Newell
Uncontextualized word embeddings are reliable feature representations of words used to obtain high quality results for various NLP applicati… (see more)ons. Given the historical success of word embeddings in NLP, we propose a retrospective on some of the most well-known word embedding algorithms. In this work, we deconstruct Word2vec, GloVe, and others, into a common form, unveiling some of the necessary and sufficient conditions required for making performant word embeddings. We find that each algorithm: (1) fits vector-covector dot products to approximate pointwise mutual information (PMI); and, (2) modulates the loss gradient to balance weak and strong signals. We demonstrate that these two algorithmic features are sufficient conditions to construct a novel word embedding algorithm, Hilbert-MLE. We find that its embeddings obtain equivalent or better performance against other algorithms across 17 intrinsic and extrinsic datasets.
Clustering-Oriented Representation Learning with Attractive-Repulsive Loss
The standard loss function used to train neural network classifiers, categorical cross-entropy (CCE), seeks to maximize accuracy on the trai… (see more)ning data; building useful representations is not a necessary byproduct of this objective. In this work, we propose clustering-oriented representation learning (COREL) as an alternative to CCE in the context of a generalized attractive-repulsive loss framework. COREL has the consequence of building latent representations that collectively exhibit the quality of natural clustering within the latent space of the final hidden layer, according to a predefined similarity function. Despite being simple to implement, COREL variants outperform or perform equivalently to CCE in a variety of scenarios, including image and news article classification using both feed-forward and convolutional neural networks. Analysis of the latent spaces created with different similarity functions facilitates insights on the different use cases COREL variants can satisfy, where the Cosine-COREL variant makes a consistently clusterable latent space, while Gaussian-COREL consistently obtains better classification accuracy than CCE.
Resolving Event Coreference with Supervised Representation Learning and Clustering-Oriented Regularization
We present an approach to event coreference resolution by developing a general framework for clustering that uses supervised representation … (see more)learning. We propose a neural network architecture with novel Clustering-Oriented Regularization (CORE) terms in the objective function. These terms encourage the model to create embeddings of event mentions that are amenable to clustering. We then use agglomerative clustering on these embeddings to build event coreference chains. For both within- and cross-document coreference on the ECB+ corpus, our model obtains better results than models that require significantly more pre-annotated information. This work provides insight and motivating results for a new general approach to solving coreference and clustering problems with representation learning.