Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Generative Adversarial Networks (GANs) are a type of deep learning techniques that have shown remarkable success in generating realistic ima… (see more)ges, videos, and other types of data. This paper provides a comprehensive guide to GANs, covering their architecture, loss functions, training methods, applications, evaluation metrics, challenges, and future directions. We begin with an introduction to GANs and their historical development, followed by a review of the background and related work. We then provide a detailed overview of the GAN architecture, including the generator and discriminator networks, and discuss the key design choices and variations. Next, we review the loss functions utilized in GANs, including the original minimax objective, as well as more recent approaches s.a. Wasserstein distance and gradient penalty. We then delve into the training of GANs, discussing common techniques s.a. alternating optimization, minibatch discrimination, and spectral normalization. We also provide a survey of the various applications of GANs across domains. In addition, we review the evaluation metrics utilized to assess the diversity and quality of GAN-produced data. Furthermore, we discuss the challenges and open issues in GANs, including mode collapse, training instability, and ethical considerations. Finally, we provide a glimpse into the future directions of GAN research, including improving scalability, developing new architectures, incorporating domain knowledge, and exploring new applications. Overall, this paper serves as a comprehensive guide to GANs, providing both theoretical and practical insights for researchers and practitioners in the field.
Generative adversarial networks are a kind of artificial intelligence algorithm designed to solve the generative modeling problem. The goal … (see more)of a generative model is to study a collection of training examples and learn the probability distribution that generated them. Generative Adversarial Networks (GANs) are then able to generate more examples from the estimated probability distribution. Generative models based on deep learning are common, but GANs are among the most successful generative models (especially in terms of their ability to generate realistic high-resolution images). GANs have been successfully applied to a wide variety of tasks (mostly in research settings) but continue to present unique challenges and research opportunities because they are based on game theory while most other approaches to generative modeling are based on optimization.