Portrait of Bing Xu is unavailable

Bing Xu

Alumni

Publications

Generative Adversarial Networks
Generative Adversarial Networks (GANs) are a type of deep learning techniques that have shown remarkable success in generating realistic ima… (see more)ges, videos, and other types of data. This paper provides a comprehensive guide to GANs, covering their architecture, loss functions, training methods, applications, evaluation metrics, challenges, and future directions. We begin with an introduction to GANs and their historical development, followed by a review of the background and related work. We then provide a detailed overview of the GAN architecture, including the generator and discriminator networks, and discuss the key design choices and variations. Next, we review the loss functions utilized in GANs, including the original minimax objective, as well as more recent approaches s.a. Wasserstein distance and gradient penalty. We then delve into the training of GANs, discussing common techniques s.a. alternating optimization, minibatch discrimination, and spectral normalization. We also provide a survey of the various applications of GANs across domains. In addition, we review the evaluation metrics utilized to assess the diversity and quality of GAN-produced data. Furthermore, we discuss the challenges and open issues in GANs, including mode collapse, training instability, and ethical considerations. Finally, we provide a glimpse into the future directions of GAN research, including improving scalability, developing new architectures, incorporating domain knowledge, and exploring new applications. Overall, this paper serves as a comprehensive guide to GANs, providing both theoretical and practical insights for researchers and practitioners in the field.
Generative adversarial networks
Generative adversarial networks are a kind of artificial intelligence algorithm designed to solve the generative modeling problem. The goal … (see more)of a generative model is to study a collection of training examples and learn the probability distribution that generated them. Generative Adversarial Networks (GANs) are then able to generate more examples from the estimated probability distribution. Generative models based on deep learning are common, but GANs are among the most successful generative models (especially in terms of their ability to generate realistic high-resolution images). GANs have been successfully applied to a wide variety of tasks (mostly in research settings) but continue to present unique challenges and research opportunities because they are based on game theory while most other approaches to generative modeling are based on optimization.