We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Joint-embedding predictive architecture (JEPA) is a self-supervised learning (SSL) paradigm with the capacity of world modeling via action-c… (see more)onditioned prediction. Previously, JEPA world models have been shown to learn action-invariant or action-equivariant representations by predicting one view of an image from another. Unlike JEPA and similar SSL paradigms, animals, including humans, learn to recognize new objects through a sequence of active interactions. To introduce \emph{sequential} interactions, we propose \textit{seq-JEPA}, a novel SSL world model equipped with an autoregressive memory module. Seq-JEPA aggregates a sequence of action-conditioned observations to produce a global representation of them. This global representation, conditioned on the next action, is used to predict the latent representation of the next observation. We empirically show the advantages of this sequence of action-conditioned observations and examine our sequential modeling paradigm in two settings: (1) \emph{predictive learning across saccades}; a method inspired by the role of eye movements in embodied vision. This approach learns self-supervised image representations by processing a sequence of low-resolution visual patches sampled from image saliencies, without any hand-crafted data augmentations. (2) \emph{invariance-equivariance trade-off}; seq-JEPA's architecture results in automatic separation of invariant and equivariant representations, with the aggregated autoregressor outputs being mostly action-invariant and the encoder output being equivariant. This is in contrast with many equivariant SSL methods that expect a single representational space to contain both invariant and equivariant features, potentially creating a trade-off between the two. Empirically, seq-JEPA achieves competitive performance on both invariance and equivariance-related benchmarks compared to existing methods. Importantly, both invariance and equivariance-related downstream performances increase as the number of available observations increases.
Joint-embedding predictive architecture (JEPA) is a self-supervised learning (SSL) paradigm with the capacity of world modeling via action-c… (see more)onditioned prediction. Previously, JEPA world models have been shown to learn action-invariant or action-equivariant representations by predicting one view of an image from another. Unlike JEPA and similar SSL paradigms, animals, including humans, learn to recognize new objects through a sequence of active interactions. To introduce \emph{sequential} interactions, we propose \textit{seq-JEPA}, a novel SSL world model equipped with an autoregressive memory module. Seq-JEPA aggregates a sequence of action-conditioned observations to produce a global representation of them. This global representation, conditioned on the next action, is used to predict the latent representation of the next observation. We empirically show the advantages of this sequence of action-conditioned observations and examine our sequential modeling paradigm in two settings: (1) \emph{predictive learning across saccades}; a method inspired by the role of eye movements in embodied vision. This approach learns self-supervised image representations by processing a sequence of low-resolution visual patches sampled from image saliencies, without any hand-crafted data augmentations. (2) \emph{invariance-equivariance trade-off}; seq-JEPA's architecture results in automatic separation of invariant and equivariant representations, with the aggregated autoregressor outputs being mostly action-invariant and the encoder output being equivariant. This is in contrast with many equivariant SSL methods that expect a single representational space to contain both invariant and equivariant features, potentially creating a trade-off between the two. Empirically, seq-JEPA achieves competitive performance on both invariance and equivariance-related benchmarks compared to existing methods. Importantly, both invariance and equivariance-related downstream performances increase as the number of available observations increases.