Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Harley Wiltzer
Alumni
Publications
Convergence Theorems for Entropy-Regularized and Distributional Reinforcement Learning
In the pursuit of finding an optimal policy, reinforcement learning (RL) methods generally ignore the properties of learned policies apart f… (see more)rom their expected return. Thus, even when successful, it is difficult to characterize which policies will be learned and what they will do. In this work, we present a theoretical framework for policy optimization that guarantees convergence to a particular optimal policy, via vanishing entropy regularization and a temperature decoupling gambit. Our approach realizes an interpretable, diversity-preserving optimal policy as the regularization temperature vanishes and ensures the convergence of policy derived objects--value functions and return distributions. In a particular instance of our method, for example, the realized policy samples all optimal actions uniformly. Leveraging our temperature decoupling gambit, we present an algorithm that estimates, to arbitrary accuracy, the return distribution associated to its interpretable, diversity-preserving optimal policy.
Traditionally, constrained policy optimization with Reinforcement Learning (RL) requires learning a new policy from scratch for any new envi… (see more)ronment, goal or cost function, with limited generalization to new tasks and constraints. Given the sample inefficiency of many common deep RL methods, this procedure can be impractical for many real-world scenarios, particularly when constraints or tasks are changing. As an alternative, in the unconstrained setting, various works have sought to pre-train representations from offline datasets to accelerate policy optimization upon specification of a reward.
Such methods can permit faster adaptation to new tasks in a given environment, dramatically improving sample efficiency. Recently, zero-shot policy optimization has been explored by leveraging a particular
In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment. Tradit… (see more)ionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimizes the reward through repeated RL procedures. This game-solving approach is both computationally expensive and difficult to stabilize. In this work, we propose a novel approach to IRL by direct policy optimization: exploiting a linear factorization of the return as the inner product of successor features and a reward vector, we design an IRL algorithm by policy gradient descent on the gap between the learner and expert features. Our non-adversarial method does not require learning a reward function and can be solved seamlessly with existing actor-critic RL algorithms. Remarkably, our approach works in state-only settings without expert action labels, a setting which behavior cloning (BC) cannot solve. Empirical results demonstrate that our method learns from as few as a single expert demonstration and achieves improved performance on various control tasks.
This paper contributes a new approach for distributional reinforcement learning which elucidates
a clean separation of transition structure … (see more)and reward in the learning process. Analogous to how
the successor representation (SR) describes the expected consequences of behaving according to a
given policy, our distributional successor measure
(SM) describes the distributional consequences of
this behaviour. We formulate the distributional
SM as a distribution over distributions and provide theory connecting it with distributional and
model-based reinforcement learning. Moreover,
we propose an algorithm that learns the distributional SM from data by minimizing a two-level
maximum mean discrepancy. Key to our method
are a number of algorithmic techniques that are
independently valuable for learning generative
models of state. As an illustration of the usefulness of the distributional SM, we show that it
enables zero-shot risk-sensitive policy evaluation
in a way that was not previously possible.
Deep reinforcement learning agents for continuous control are known to exhibit significant instability in their performance over time. In th… (see more)is work, we provide a fresh perspective on these behaviors by studying the return landscape: the mapping between a policy and a return. We find that popular algorithms traverse noisy neighborhoods of this landscape, in which a single update to the policy parameters leads to a wide range of returns. By taking a distributional view of these returns, we map the landscape, characterizing failure-prone regions of policy space and revealing a hidden dimension of policy quality. We show that the landscape exhibits surprising structure by finding simple paths in parameter space which improve the stability of a policy. To conclude, we develop a distribution-aware procedure which finds such paths, navigating away from noisy neighborhoods in order to improve the robustness of a policy. Taken together, our results provide new insight into the optimization, evaluation, and design of agents.