Portrait of Guy Wolf

Guy Wolf

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Mathematics and Statistics
Concordia University
CHUM - Montreal University Hospital Center

Biography

Guy Wolf is an associate professor in the Department of Mathematics and Statistics at Université de Montréal.

His research interests lie at the intersection of machine learning, data science and applied mathematics. He is particularly interested in data mining methods that use manifold learning and deep geometric learning, as well as applications for the exploratory analysis of biomedical data.

Wolf’s research focuses on exploratory data analysis and its applications in bioinformatics. His approaches are multidisciplinary and bring together machine learning, signal processing and applied math tools. His recent work has used a combination of diffusion geometries and deep learning to find emergent patterns, dynamics, and structure in big high dimensional- data (e.g., in single-cell genomics and proteomics).

Current Students

Ria Arora
Master's Research - Université de Montréal
Co-supervisor :
ria.arora@mila.quebec
Nader Asadi
Collaborating Alumni
Principal supervisor :
nader.asadi@mila.quebec
Adrien Aumon
PhD - Université de Montréal
adrien.aumon@mila.quebec
Semih Cantürk
PhD - Université de Montréal
semih.canturk@mila.quebec
Muawiz Chaudhary
Collaborating Alumni
muawiz.chaudhary@mila.quebec
Stefan Horoi
PhD - Université de Montréal
stefan.horoi@mila.quebec
Will Hua
Master's Research - McGill University
Principal supervisor :
chenqing.hua@mila.quebec
Guillaume Huguet
PhD - Université de Montréal
guillaume.huguet@mila.quebec
Charles-Etienne Joseph
Master's Research - Université de Montréal
Principal supervisor :
charles-etienne.joseph@mila.quebec
Jake Kovalic
Collaborating Researcher - Yale
jake.kovalic@mila.quebec
Vincent Létourneau
Postdoctorate - Université de Montréal
letournv@mila.quebec
Myriam Lizotte
PhD - Université de Montréal
myriam.lizotte@mila.quebec
Lydia Mezrag
PhD - Université de Montréal
lydia.mezrag@mila.quebec
Sacha Morin
PhD - Université de Montréal
Co-supervisor :
sacha.morin@mila.quebec
Hasti Nafisi
Master's Research - Université de Montréal
Co-supervisor :
hasti.nafisi@mila.quebec
Geraldin Nanfack
Postdoctorate - Concordia University
Principal supervisor :
geraldin.nanfack@mila.quebec
Amine Natik
PhD - Université de Montréal
Principal supervisor :
natikami@mila.quebec
Shuang Ni
PhD - Université de Montréal
shuang.ni@mila.quebec
Albert Orozco Camacho
PhD - Concordia University
Principal supervisor :
orozcoca@mila.quebec
Edouard Oyallon
Visiting Researcher
edouard.oyallon@mila.quebec
Mehrbod Paria
Master's Research - Concordia University
Principal supervisor :
paria.mehrbod@mila.quebec
Donald Shenaj
Collaborating Researcher - Concordia University
Principal supervisor :
donald.shenaj@mila.quebec
Pedro Vianna
Collaborating Researcher - Université de Montréal
Co-supervisor :
pedro.vianna@mila.quebec
Frederik Wenkel
PhD - Université de Montréal
frederik.wenkel@mila.quebec
Vivian White
Research Intern - Western Washington University
Principal supervisor :
vivian.white@mila.quebec
Zhang Yanlei
Postdoctorate - Université de Montréal
yanlei.zhang@mila.quebec

Publications

Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport
Alexander Tong
Nikolay Malkin
Guillaume Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Kilian FATRAS
Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have been held back by limitations in their si… (see more)mulation-based maximum likelihood training. We introduce the generalized \textit{conditional flow matching} (CFM) technique, a family of simulation-free training objectives for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, CFM does not require the source distribution to be Gaussian or require evaluation of its density. A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Furthermore, OT-CFM is the first method to compute dynamic OT in a simulation-free way. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks, such as inferring single cell dynamics, unsupervised image translation, and Schrödinger bridge inference.
Harmony in Diversity: Merging Neural Networks with Canonical Correlation Analysis
Stefan Horoi
Albert Manuel Orozco Camacho
Ensembling multiple models enhances predictive performance by utilizing the varied learned features of the different models but incurs signi… (see more)ficant computational and storage costs. Model fusion, which combines parameters from multiple models into one, aims to mitigate these costs but faces practical challenges due to the complex, non-convex nature of neural network loss landscapes, where learned minima are often separated by high loss barriers. Recent works have explored using permutations to align network features, reducing the loss barrier in parameter space. However, permutations are restrictive since they assume a one-to-one mapping between the different models' neurons exists. We propose a new model merging algorithm, CCA Merge, which is based on Canonical Correlation Analysis and aims to maximize the correlations between linear combinations of the model features. We show that our method of aligning models leads to better performances than past methods when averaging models trained on the same, or differing data splits. We also extend this analysis into the harder many models setting where more than 2 models are merged, and we find that CCA Merge works significantly better in this setting than past methods.
Harmony in Diversity: Merging Neural Networks with Canonical Correlation Analysis
Stefan Horoi
Albert Manuel Orozco Camacho
Ensembling multiple models enhances predictive performance by utilizing the varied learned features of the different models but incurs signi… (see more)ficant computational and storage costs. Model fusion, which combines parameters from multiple models into one, aims to mitigate these costs but faces practical challenges due to the complex, non-convex nature of neural network loss landscapes, where learned minima are often separated by high loss barriers. Recent works have explored using permutations to align network features, reducing the loss barrier in parameter space. However, permutations are restrictive since they assume a one-to-one mapping between the different models' neurons exists. We propose a new model merging algorithm, CCA Merge, which is based on Canonical Correlation Analysis and aims to maximize the correlations between linear combinations of the model features. We show that our method of aligning models leads to better performances than past methods when averaging models trained on the same, or differing data splits. We also extend this analysis into the harder many models setting where more than 2 models are merged, and we find that CCA Merge works significantly better in this setting than past methods.
Learning and Aligning Structured Random Feature Networks
Vivian White
Muawiz Sajjad Chaudhary
Kameron Decker Harris
Artificial neural networks (ANNs) are considered "black boxes'' due to the difficulty of interpreting their learned weights. While choosing… (see more) the best features is not well understood, random feature networks (RFNs) and wavelet scattering ground some ANN learning mechanisms in function space with tractable mathematics. Meanwhile, the genetic code has evolved over millions of years, shaping the brain to develop variable neural circuits with reliable structure that resemble RFNs. We explore a similar approach, embedding neuro-inspired, wavelet-like weights into multilayer RFNs. These can outperform scattering and have kernels that describe their function space at large width. We build learnable and deeper versions of these models where we can optimize separate spatial and channel covariances of the convolutional weight distributions. We find that these networks can perform comparatively with conventional ANNs while dramatically reducing the number of trainable parameters. Channel covariances are most influential, and both weight and activation alignment are needed for classification performance. Our work outlines how neuro-inspired configurations may lead to better performance in key cases and offers a potentially tractable reduced model for ANN learning.
Learning and Aligning Structured Random Feature Networks
Vivian White
Muawiz Sajjad Chaudhary
Kameron Decker Harris
Artificial neural networks (ANNs) are considered ``black boxes'' due to the difficulty of interpreting their learned weights. While choosin… (see more)g the best features is not well understood, random feature networks (RFNs) and wavelet scattering ground some ANN learning mechanisms in function space with tractable mathematics. Meanwhile, the genetic code has evolved over millions of years, shaping the brain to devlop variable neural circuits with reliable structure that resemble RFNs. We explore a similar approach, embedding neuro-inspired, wavelet-like weights into multilayer RFNs. These can outperform scattering and have kernels that describe their function space at large width. We build learnable and deeper versions of these models where we can optimize separate spatial and channel covariances of the convolutional weight distributions. We find that these networks can perform comparatively with conventional ANNs while dramatically reducing the number of trainable parameters. Channel covariances are most influential, and both weight and activation alignment are needed for classification performance. Our work outlines how neuro-inspired configurations may lead to better performance in key cases and offers a potentially tractable reduced model for ANN learning.
Channel-Selective Normalization for Label-Shift Robust Test-Time Adaptation
Pedro Vianna
Muawiz Chaudhary
Paria Mehrbod
An Tang
Guy Cloutier
Michael Eickenberg
Deep neural networks have useful applications in many different tasks, however their performance can be severely affected by changes in the … (see more)data distribution. For example, in the biomedical field, their performance can be affected by changes in the data (different machines, populations) between training and test datasets. To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust models to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks. It is implemented by recalculating batch normalization statistics on test batches. Prior work has focused on analysis with test data that has the same label distribution as the training data. However, in many practical applications this technique is vulnerable to label distribution shifts, sometimes producing catastrophic failure. This presents a risk in applying test time adaptation methods in deployment. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. Our selection scheme is based on two principles that we empirically motivate: (1) later layers of networks are more sensitive to label shift (2) individual features can be sensitive to specific classes. We apply the proposed technique to three classification tasks, including CIFAR10-C, Imagenet-C, and diagnosis of fatty liver, where we explore both covariate and label distribution shifts. We find that our method allows to bring the benefits of TTA while significantly reducing the risk of failure common in other methods, while being robust to choice in hyperparameters.
Effective Protein-Protein Interaction Exploration with PPIretrieval
Chenqing Hua
Connor Coley
Shuangjia Zheng
Gaining Biological Insights through Supervised Data Visualization
Jake S. Rhodes
Adrien Aumon
Sacha Morin
Marc Girard
Catherine Larochelle
Boaz Lahav
Elsa Brunet-Ratnasingham
Amélie Pagliuzza
Lorie Marchitto
Wei Zhang
Adele Cutler
F. Grand'Maison
Anhong Zhou
Andrés Finzi
Nicolas Chomont
Daniel E. Kaufmann
Stephanie Zandee
Alexandre Prat
Kevin R. Moon
Dimensionality reduction-based data visualization is pivotal in comprehending complex biological data. The most common methods, such as PHAT… (see more)E, t-SNE, and UMAP, are unsupervised and therefore reflect the dominant structure in the data, which may be independent of expert-provided labels. Here we introduce a supervised data visualization method called RF-PHATE, which integrates expert knowledge for further exploration of the data. RF-PHATE leverages random forests to capture intricate featurelabel relationships. Extracting information from the forest, RF-PHATE generates low-dimensional visualizations that highlight relevant data relationships while disregarding extraneous features. This approach scales to large datasets and applies to classification and regression. We illustrate RF-PHATE’s prowess through three case studies. In a multiple sclerosis study using longitudinal clinical and imaging data, RF-PHATE unveils a sub-group of patients with non-benign relapsingremitting Multiple Sclerosis, demonstrating its aptitude for time-series data. In the context of Raman spectral data, RF-PHATE effectively showcases the impact of antioxidants on diesel exhaust-exposed lung cells, highlighting its proficiency in noisy environments. Furthermore, RF-PHATE aligns established geometric structures with COVID-19 patient outcomes, enriching interpretability in a hierarchical manner. RF-PHATE bridges expert insights and visualizations, promising knowledge generation. Its adaptability, scalability, and noise tolerance underscore its potential for widespread adoption.
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Shenyang Huang
Joao Alex Cunha
Zhiyi Li
Gabriela Moisescu-Pareja
Oleksandr Dymov
Samuel Maddrell-Mander
Callum McLean
Frederik Wenkel
Luis Müller
Jama Hussein Mohamud
Ali Parviz
Michael Craig
Michał Koziarski
Jiarui Lu
Zhaocheng Zhu
Cristian Gabellini
Kerstin Klaser
Josef Dean
Cas Wognum … (see 15 more)
Maciej Sypetkowski
Christopher Morris
Ioannis Koutis
Prudencio Tossou
Hadrien Mary
Therence Bois
Andrew William Fitzgibbon
Blazej Banaszewski
Chad Martin
Dominic Masters
Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, wh… (see more)ere datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models. In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset. In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks. The Graphium library is publicly available on Github and the dataset links are available in Part 1 and Part 2.
Assessing Neural Network Representations During Training Using Noise-Resilient Diffusion Spectral Entropy
Danqi Liao
Chen Liu
Benjamin W Christensen
Alexander Tong
Guillaume Huguet
Maximilian Nickel
Ian Adelstein
Smita Krishnaswamy
Entropy and mutual information in neural networks provide rich information on the learning process, but they have proven difficult to comput… (see more)e reliably in high dimensions. Indeed, in noisy and high-dimensional data, traditional estimates in ambient dimensions approach a fixed entropy and are prohibitively hard to compute. To address these issues, we leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures. Specifically, we define diffusion spectral entropy (DSE) in neural representations of a dataset as well as diffusion spectral mutual information (DSMI) between different variables representing data. First, we show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data that outperform classic Shannon entropy, nonparametric estimation, and mutual information neural estimation (MINE). We then study the evolution of representations in classification networks with supervised learning, self-supervision, or overfitting. We observe that (1) DSE of neural representations increases during training; (2) DSMI with the class label increases during generalizable learning but stays stagnant during overfitting; (3) DSMI with the input signal shows differing trends: on MNIST it increases, while on CIFAR-10 and STL-10 it decreases. Finally, we show that DSE can be used to guide better network initialization and that DSMI can be used to predict downstream classification accuracy across 962 models on ImageNet.
Spectral Temporal Contrastive Learning
Sacha Morin
Somjit Nath
Learning useful data representations without requiring labels is a cornerstone of modern deep learning. Self-supervised learning methods, pa… (see more)rticularly contrastive learning (CL), have proven successful by leveraging data augmentations to define positive pairs. This success has prompted a number of theoretical studies to better understand CL and investigate theoretical bounds for downstream linear probing tasks. This work is concerned with the temporal contrastive learning (TCL) setting where the sequential structure of the data is used instead to define positive pairs, which is more commonly used in RL and robotics contexts. In this paper, we adapt recent work on Spectral CL to formulate Spectral Temporal Contrastive Learning (STCL). We discuss a population loss based on a state graph derived from a time-homogeneous reversible Markov chain with uniform stationary distribution. The STCL loss enables to connect the linear probing performance to the spectral properties of the graph, and can be estimated by considering previously observed data sequences as an ensemble of MCMC chains.
Inferring dynamic regulatory interaction graphs from time series data with perturbations
Dhananjay Bhaskar
Daniel Sumner Magruder
Edward De Brouwer
Matheo Morales
Aarthi Venkat
Frederik Wenkel
Smita Krishnaswamy