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Abstract

Recent work has shown how denoising and contractive autoencoders implicitly
capture the structure of the data-generating density, in the case where the cor-
ruption noise is Gaussian, the reconstruction error is the squared error, and the
data is continuous-valued. This has led to various proposals for sampling from
this implicitly learned density function, using Langevin and Metropolis-Hastings
MCMC. However, it remained unclear how to connect the training procedure
of regularized auto-encoders to the implicit estimation of the underlying data-
generating distribution when the data are discrete, or using other forms of corrup-
tion process and reconstruction errors. Another issue is the mathematical justifi-
cation which is only valid in the limit of small corruption noise. We propose here
a different attack on the problem, which deals with all these issues: arbitrary (but
noisy enough) corruption, arbitrary reconstruction loss (seen as a log-likelihood),
handling both discrete and continuous-valued variables, and removing the bias due
to non-infinitesimal corruption noise (or non-infinitesimal contractive penalty).

1 Introduction
Auto-encoders learn an encoder function from input to representation and a decoder function back
from representation to input space, such that the reconstruction (composition of encoder and de-
coder) is good for training examples. Regularized auto-encoders also involve some form of regu-
larization that prevents the auto-encoder from simply learning the identity function, so that recon-
struction error will be low at training examples (and hopefully at test examples) but high in general.
Different variants of auto-encoders and sparse coding have been, along with RBMs, among the
most successful building blocks in recent research in deep learning (Bengio et al., 2013b). Whereas
the usefulness of auto-encoder variants as feature learners for supervised learning can directly be
assessed by performing supervised learning experiments with unsupervised pre-training, what has
remained until recently rather unclear is the interpretation of these algorithms in the context of
pure unsupervised learning, as devices to capture the salient structure of the input data distribution.
Whereas the answer is clear for RBMs, it is less obvious for regularized auto-encoders. Do they
completely characterize the input distribution or only some aspect of it? For example, clustering
algorithms such as k-means only capture the modes of the distribution, while manifold learning
algorithms characterize the low-dimensional regions where the density concentrates.

Some of the first ideas about the probabilistic interpretation of auto-encoders were proposed by Ran-
zato et al. (2008): they were viewed as approximating an energy function through the reconstruction
error, i.e., being trained to have low reconstruction error at the training examples and high recon-
struction error elsewhere (through the regularizer, e.g., sparsity or otherwise, which prevents the
auto-encoder from learning the identity function). An important breakthrough then came, yielding
a first formal probabilistic interpretation of regularized auto-encoders as models of the input dis-
tribution, with the work of Vincent (2011). This work showed that some denoising auto-encoders
(DAEs) correspond to a Gaussian RBM and that minimizing the denoising reconstruction error (as a
squared error) estimates the energy function through a regularized form of score matching, with the
regularization disappearing as the amount of corruption noise goes to 0, and then converging to the
same solution as score matching (Hyvärinen, 2005). This connection and its generalization to other
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energy functions, giving rise to the general denoising score matching training criterion, is discussed
in several other papers (Kingma and LeCun, 2010; Swersky et al., 2011; Alain and Bengio, 2013).

Another breakthrough has been the development of an empirically successful sampling algorithm
for contractive auto-encoders (Rifai et al., 2012), which basically involves composing encoding, de-
coding, and noise addition steps. This algorithm is motivated by the observation that the Jacobian
matrix (of derivatives) of the encoding function provides an estimator of a local Gaussian approxi-
mation of the density, i.e., the leading singular vectors of that matrix span the tangent plane of the
manifold near which the data density concentrates. However, a formal justification for this algorithm
remains an open problem.

The last step in this development (Alain and Bengio, 2013) generalized the result from Vincent
(2011) by showing that when a DAE (or a contractive auto-encoder with the contraction on the whole
encode/decode reconstruction function) is trained with small Gaussian corruption and squared error
loss, it estimates the score (derivative of the log-density) of the underlying data-generating distri-
bution, which is proportional to the difference between reconstruction and input. This result does
not depend on the parametrization of the auto-encoder, but suffers from the following limitations: it
applies to one kind of corruption (Gaussian), only to continuous-valued inputs, only for one kind of
loss (squared error), and it becomes valid only in the limit of small noise (even though in practice,
best results are obtained with large noise levels, comparable to the range of the input).

What we propose here is a different probabilistic interpretation of DAEs, which is valid for any data
type, any corruption process (so long as it has broad enough support), and any reconstruction loss
(so long as we can view it as a log-likelihood).

The basic idea is that if we corrupt observed random variableX into X̃ using conditional distribution
C(X̃|X), we are really training the DAE to estimate the reverse conditional P (X|X̃). Combining
this estimator with the known C(X̃|X), we show that we can recover a consistent estimator of
P (X) through a Markov chain that alternates between sampling from P (X|X̃) and sampling from
C(X̃|X), i.e., encode/decode, sample from the reconstruction distribution model P (X|X̃), apply
the stochastic corruption procedure C(X̃|X), and iterate.

This theoretical result is validated through experiments on artificial data in a non-parametric setting
and experiments on real data in a parametric setting (with neural net DAEs). We find that we can
improve the sampling behavior by using the model itself to define the corruption process, yielding a
training procedure that has some surface similarity to the contrastive divergence algorithm (Hinton,
1999; Hinton et al., 2006).

Algorithm 1 THE GENERALIZED DENOISING AUTO-ENCODER TRAINING ALGORITHM requires
a training set or training distribution D of examples X , a given corruption process C(X̃|X) from
which one can sample, and with which one trains a conditional distribution Pθ(X|X̃) from which
one can sample.

repeat
• sample training example X ∼ D
• sample corrupted input X̃ ∼ C(X̃|X)

• use (X, X̃) as an additional training example towards minimizing the expected value of
− logPθ(X|X̃), e.g., by a gradient step with respect to θ.

until convergence of training (e.g., as measured by early stopping on out-of-sample negative log-
likelihood)

2 Generalizing Denoising Auto-Encoders
2.1 Definition and Training
Let P(X) be the data-generating distribution over observed random variable X . Let C be a given
corruption process that stochastically maps an X to a X̃ through conditional distribution C(X̃|X).
The training data for the generalized denoising auto-encoder is a set of pairs (X, X̃) with X ∼
P(X) and X̃ ∼ C(X̃|X). The DAE is trained to predict X given X̃ through a learned conditional
distribution Pθ(X|X̃), by choosing this conditional distribution within some family of distributions
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indexed by θ, not necessarily a neural net. The training procedure for the DAE can generally be
formulated as learning to predict X given X̃ by possibly regularized maximum likelihood, i.e., the
generalization performance that this training criterion attempts to minimize is

L(θ) = −E[logPθ(X|X̃)] (1)

where the expectation is taken over the joint data-generating distribution
P(X, X̃) = P(X)C(X̃|X). (2)

2.2 Sampling
We define the following pseudo-Gibbs Markov chain associated with Pθ:

Xt ∼ Pθ(X|X̃t−1)

X̃t ∼ C(X̃|Xt) (3)

which can be initialized from an arbitrary choice X0. This is the process by which we are go-
ing to generate samples Xt according to the model implicitly learned by choosing θ. We define
T (Xt|Xt−1) the transition operator that defines a conditional distribution for Xt given Xt−1, inde-
pendently of t, so that the sequence of Xt’s forms a homogeneous Markov chain. If the asymptotic
marginal distribution of the Xt’s exists, we call this distribution π(X), and we show below that it
consistently estimates P(X).

Note that the above chain is not a proper Gibbs chain in general because there is no guarantee
that Pθ(X|X̃t−1) and C(X̃|Xt) are consistent with a unique joint distribution. In that respect, the
situation is similar to the sampling procedure for dependency networks (Heckerman et al., 2000), in
that the pairs (Xt, X̃t−1) are not guaranteed to have the same asymptotic distribution as the pairs
(Xt, X̃t) as t → ∞. As a follow-up to the results in the next section, it is shown in Bengio et al.
(2013a) that dependency networks can be cast into the same framework (which is that of Generative
Stochastic Networks), and that if the Markov chain is ergodic, then its stationary distribution will
define a joint distribution between the random variables (here that would be X and X̃), even if the
conditionals are not consistent with it.

2.3 Consistency
Normally we only have access to a finite number n of training examples but as n → ∞, the empir-
ical training distribution approaches the data-generating distribution. To compensate for the finite
training set, we generally introduce a (possibly data-dependent) regularizer Ω and the actual training
criterion is a sum over n training examples (X, X̃),

Ln(θ) =
1

n

∑
X∼P(X),X̃∼C(X̃|X)

λnΩ(θ,X, X̃)− logPθ(X|X̃) (4)

where we allow the regularization coefficient λn to be chosen according to the number of training
examples n, with λn → 0 as n → ∞. With λn → 0 we get that Ln → L (i.e. converges to
generalization error, Eq. 1), so consistent estimators of P(X|X̃) stay consistent. We define θn to be
the minimizer of Ln(θ) when given n training examples.

We define Tn to be the transition operator Tn(Xt|Xt−1) =
∫
Pθn(Xt|X̃)C(X̃|Xt−1)dX̃ associated

with θn (the parameter obtained by minimizing the training criterion with n examples), and define
πn to be the asymptotic distribution of the Markov chain generated by Tn (if it exists). We also
define T be the operator of the Markov chain associated with the learned model as n→∞.

Theorem 1. If Pθn(X|X̃) is a consistent estimator of the true conditional distribution P(X|X̃)
and Tn defines an ergodic Markov chain, then as the number of examples n → ∞, the asymptotic
distribution πn(X) of the generated samples converges to the data-generating distribution P(X).

Proof. If Tn is ergodic, then the Markov chain converges to a πn. Based on our definition of
the “true” joint (Eq. 2), one obtains a conditional P(X|X̃) ∝ P(X)C(X̃|X). This conditional,
along with P(X̃|X) = C(X̃|X) can be used to define a proper Gibbs chain where one alterna-
tively samples from P(X̃|X) and from P(X|X̃). Let T be the corresponding “true” transition
operator, which maps the t-th sample X to the t + 1-th in that chain. That is, T (Xt|Xt−1) =∫
P(Xt|X̃)C(X̃|Xt−1)dX̃ . T produces P(X) as asymptotic marginal distribution over X (as we
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consider more samples from the chain) simply because P(X) is the marginal distribution of the joint
P(X)C(X̃|X) to which the chain converges. By hypothesis we have that Pθn(X|X̃) → P(X|X̃)

as n→∞. Note that Tn is defined exactly as T but with P(Xt|X̃) replaced by Pθn(X|X̃). Hence
Tn → T as n→∞.

Now let us convert the convergence of Tn to T into the convergence of πn(X) to
P(X). We will exploit the fact that for the 2-norm, matrix M and unit vector v,
||Mv||2 ≤ sup||x||2=1 ||Mx||2 = ||M ||2. Consider M = T − Tn and v the principal eigenvector
of T , which, by the Perron-Frobenius theorem, corresponds to the asymptotic distribution P(X).
Since Tn → T , ||T − Tn||2 → 0. Hence ||(T − Tn)v||2 ≤ ||T − Tn||2 → 0, which implies
that Tnv → T v = v, where the last equality comes from the Perron-Frobenius theorem (the lead-
ing eigenvalue is 1). Since Tnv → v, it implies that v becomes the leading eigenvector of Tn,
i.e., the asymptotic distribution of the Markov chain, πn(X) converges to the true data-generating
distribution, P(X), as n→∞.

Hence the asymptotic sampling distribution associated with the Markov chain defined by Tn (i.e., the
model) implicitly defines the distribution πn(X) learned by the DAE over the observed variable X .
Furthermore, that estimator of P(X) is consistent so long as our (regularized) maximum likelihood
estimator of the conditional Pθ(X|X̃) is also consistent. We now provide sufficient conditions for
the ergodicity of the chain operator (i.e. to apply theorem 1).

Corollary 1. If Pθ(X|X̃) is a consistent estimator of the true conditional distribution P(X|X̃),
and both the data-generating distribution and denoising model are contained in and non-zero in
a finite-volume region V (i.e., ∀X̃ , ∀X /∈ V, P(X) = 0, Pθ(X|X̃) = 0), and ∀X̃ , ∀X ∈ V,

P(X) > 0, Pθ(X|X̃) > 0, C(X̃|X) > 0 and these statements remain true in the limit of n → ∞,
then the asymptotic distribution πn(X) of the generated samples converges to the data-generating
distribution P(X).

Proof. To obtain the existence of a stationary distribution, it is sufficient to have irreducibility (every
value reachable from every other value), aperiodicity (no cycle where only paths through the cycle
allow to return to some value), and recurrence (probability 1 of returning eventually). These condi-
tions can be generalized to the continuous case, where we obtain ergodic Harris chains rather than
ergodic Markov chains. If Pθ(X|X̃) > 0 and C(X̃|X) > 0 (for X ∈ V ), then Tn(Xt|Xt−1) > 0
as well, because

T (Xt|Xt−1) =

∫
Pθ(Xt|X̃)C(X̃|Xt−1)dX̃

This positivity of the transition operator guarantees that one can jump from any point in V to any
other point in one step, thus yielding irreducibility and aperiodicity. To obtain recurrence (prevent-
ing the chain from diverging to infinity), we rely on the assumption that the domain V is bounded.
Note that although Tn(Xt|Xt−1) > 0 could be true for any finite n, we need this condition to hold
for n → ∞ as well, to obtain the consistency result of theorem 1. By assuming this positivity
(Boltzmann distribution) holds for the data-generating distribution, we make sure that πn does not
converge to a distribution which puts 0’s anywhere in V . Having satisfied all the conditions for
the existence of a stationary distribution for Tn as n → ∞, we can apply theorem 1 and obtain its
conclusion.

Note how these conditions take care of the various troubling cases one could think of. We avoid
the case where there is no corruption (which would yield a wrong estimation, with the DAE simply
learning a dirac probability its input). Second, we avoid the case where the chain wanders to infinity
by assuming a finite volume where the model and data live, a real concern in the continuous case.
If it became a real issue, we could perform rejection sampling to make sure that P (X|X̃) produces
X ∈ V .

2.4 Locality of the Corruption and Energy Function
If we believe that P (X|X̃) is well estimated for all (X, X̃) pairs, i.e., that it is approximately
consistent with C(X̃|X), then we get as many estimators of the energy function as we want, by
picking a particular value of X̃ .

Let us define the notation P (·) to denote the probability of the joint, marginals or conditionals over
the pairs (Xt, X̃t−1) that are produced by the model’s Markov chain T as t→∞. SoP (X) = π(X)
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is the asymptotic distribution of the Markov chain T , and P (X̃) the marginal over the X̃’s in that
chain. The above assumption means that P (X̃t−1|Xt) ≈ C(X̃t−1|Xt) (which is not guaranteed
in general, but only asymptotically as P approaches the true P). Then, by Bayes rule, P (X) =
P (X|X̃)P (X̃)

P (X̃|X)
≈ P (X|X̃)P (X̃)

C(X̃|X)
∝ P (X|X̃)

C(X̃|X)
so that we can get an estimated energy function from any

given choice of X̃ through energy(X) ≈ − logP (X|X̃) + logC(X̃|X). where one should note
that the intractable partition function depends on the chosen value of X̃ .

How much can we trust that estimator and how should X̃ be chosen? First note that P (X|X̃) has
only been trained for pairs (X, X̃) for which X̃ is relatively close toX (assuming that the corruption
is indeed changing X generally into some neighborhood). Hence, although in theory (with infinite
amount of data and capacity) the above estimator should be good, in practice it might be poor when
X is far from X̃ . So if we pick a particular X̃ the estimated energy might be good for X in the
neighborhood of X̃ but poor elsewhere. What we could do though, is use a different approximate
energy function in different regions of the input space. Hence the above estimator gives us a way to
compare the probabilities of nearby points X1 and X2 (through their difference in energy), picking
for example a midpoint X̃ = 1

2 (X1 +X2). One could also imagine that if X1 and XN are far apart,
we could chart a path between X1 and XN with intermediate points Xk and use an estimator of
the relative energies between the neighbors Xk, Xk+1, add them up, and obtain an estimator of the
relative energy between X1 and XN .

Figure 1: Although P(X) may be complex and multi-modal, P(X|X̃) is often simple and approx-
imately unimodal (e.g., multivariate Gaussian, pink oval) for most values of X̃ when C(X̃|X) is a
local corruption. P(X) can be seen as an infinite mixture of these local distributions (weighted by
P(X̃)).

This brings up an interesting point. If we could always obtain a good estimator P (X|X̃) for any
X̃ , we could just train the model with C(X̃|X) = C(X̃), i.e., with an unconditional noise process
that ignores X . In that case, the estimator P (X|X̃) would directly equal P (X) since X̃ and X
are actually sampled independently in its “denoising” training data. We would have gained nothing
over just training any probabilistic model just directly modeling the observed X’s. The gain we
expect from using the denoising framework is that if X̃ is a local perturbation of X , then the true
P(X|X̃) can be well approximated by a much simpler distribution than P(X). See Figure 1 for a
visual explanation: in the limit of very small perturbations, one could even assume that P(X|X̃)
can be well approximated by a simple unimodal distribution such as the Gaussian (for continuous
data) or factorized binomial (for discrete binary data) commonly used in DAEs as the reconstruction
probability function (conditioned on X̃). This idea is already behind the non-local manifold Parzen
windows (Bengio et al., 2006a) and non-local manifold tangent learning (Bengio et al., 2006b) al-
gorithms: the local density around a point X̃ can be approximated by a multivariate Gaussian whose
covariance matrix has leading eigenvectors that span the local tangent of the manifold near which
the data concentrates (if it does). The idea of a locally Gaussian approximation of a density with a
manifold structure is also exploited in the more recent work on the contractive auto-encoder (Rifai
et al., 2011) and associated sampling procedures (Rifai et al., 2012). Finally, strong theoretical ev-
idence in favor of that idea comes from the result from Alain and Bengio (2013): when the amount
of corruption noise converges to 0 and the input variables have a smooth continuous density, then a
unimodal Gaussian reconstruction density suffices to fully capture the joint distribution.

Hence, although P (X|X̃) encapsulates all information about P(X) (assuming C given), it will
generally have far fewer non-negligible modes, making easier to approximate it. This can be seen
analytically by considering the case where P(X) is a mixture of many Gaussians and the corruption
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Figure 2: Walkback samples get attracted by spu-
rious modes and contribute to removing them.
Segment of data manifold in violet and example
walkback path in red dotted line, starting on the
manifold and going towards a spurious attractor.
The vector field represents expected moves of the
chain, for a unimodal P (X|X̃), with arrows from
X̃ to X .

is a local Gaussian: P (X|X̃) remains a Gaussian mixture, but one for which most of the modes
have become negligible (Alain and Bengio, 2013). We return to this in Section 3, suggesting that
in order to avoid spurious modes, it is better to have non-infinitesimal corruption, allowing faster
mixing and successful burn-in not pulled by spurious modes far from the data.

3 Reducing the Spurious Modes with Walkback Training

Sampling in high-dimensional spaces (like in experiments below) using a simple local corruption
process (such as Gaussian or salt-and-pepper noise) suggests that if the corruption is too local, the
DAE’s behavior far from the training examples can create spurious modes in the regions insuffi-
ciently visited during training. More training iterations or increasing the amount of corruption noise
helps to substantially alleviate that problem, but we discovered an even bigger boost by training the
DAE Markov chain to walk back towards the training examples (see Figure 2). We exploit knowl-
edge of the currently learned model P (X|X̃) to define the corruption, so as to pick values of X̃ that
would be obtained by following the generative chain: wherever the model would go if we sampled
using the generative Markov chain starting at a training example X , we consider to be a kind of
“negative example” X̃ from which the auto-encoder should move away (and towards X). The spirit
of this procedure is thus very similar to the CD-k (Contrastive Divergence with k MCMC steps)
procedure proposed to train RBMs (Hinton, 1999; Hinton et al., 2006).

More precisely, the modified corruption process C̃ we propose is the following, based on the original
corruption process C. We use it in a version of the training algorithm called walkback, where we
replace the corruption process C of Algorithm 1 by the walkback process C̃ of Algorithm 2. This
also provides extra training examples (taking advantage of the X̃ samples generated along the walk
away from X). It is called walkback because it forces the DAE to learn to walk back from the
random walk it generates, towards the X’s in the training set.

Algorithm 2: THE WALKBACK ALGORITHM is based on the walkback corruption process C̃(X̃|X),
defined below in terms of a generic original corruption process C(X̃|X) and the current model’s re-
construction conditional distribution P (X|X̃). For each training example X , it provides a sequence
of additional training examples (X, X̃∗) for the DAE. It has a hyper-parameter that is a geometric
distribution parameter 0 < p < 1 controlling the length of these walks away from X , with p = 0.5
by default. Training by Algorithm 1 is the same, but using all X̃∗ in the returned list L to form the
pairs (X, X̃∗) as training examples instead of just (X, X̃).

1: X∗ ← X , L← [ ]

2: Sample X̃∗ ∼ C(X̃|X∗)
3: Sample u ∼ Uniform(0, 1)
4: if u > p then
5: Append X̃∗ to L and return L
6: If during training, append X̃∗ to L, so (X, X̃∗) will be an additional training example.
7: Sample X∗ ∼ P (X|X̃∗)
8: goto 2.

Proposition 1. Let P (X) be the implicitly defined asymptotic distribution of the Markov chain al-
ternating sampling from P (X|X̃) and C(X̃|X), where C is the original local corruption process.
Under the assumptions of corollary 1, minimizing the training criterion in walkback training algo-
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rithm for generalized DAEs (combining Algorithms 1 and 2) produces a P (X) that is a consistent
estimator of the data generating distribution P(X).

Proof. Consider that during training, we produce a sequence of estimators Pk(X|X̃) where Pk
corresponds to the k-th training iteration (modifying the parameters after each iteration). With the
walkback algorithm, Pk−1 is used to obtain the corrupted samples X̃ from which the next model
Pk is produced. If training converges, Pk ≈ Pk+1 = P and we can then consider the whole
corruption process C̃ fixed. By corollary 1, the Markov chain obtained by alternating samples from
P (X|X̃) and samples from C̃(X̃|X) converges to an asymptotic distribution P (X) which estimates
the underlying data-generating distribution P(X). The walkback corruption C̃(X̃|X) corresponds
to a few steps alternating sampling from C(X̃|X) (the fixed local corruption) and sampling from
P (X|X̃). Hence the overall sequence when using C̃ can be seen as a Markov chain obtained by
alternatively sampling from C(X̃|X) and from P (X|X̃) just as it was when using merely C. Hence,
once the model is trained with walkback, one can sample from it usingc orruption C(X̃|X).

A consequence is that the walkback training algorithm estimates the same distribution as the orig-
inal denoising algorithm, but may do it more efficiently (as we observe in the experiments), by
exploring the space of corruptions in a way that spends more time where it most helps the model.

4 Experimental Validation

Non-parametric case. The mathematical results presented here apply to any denoising training
criterion where the reconstruction loss can be interpreted as a negative log-likelihood. This re-
mains true whether or not the denoising machine P (X|X̃) is parametrized as the composition of
an encoder and decoder. This is also true of the asymptotic estimation results in Alain and Bengio
(2013). We experimentally validate the above theorems in a case where the asymptotic limit (of
enough data and enough capacity) can be reached, i.e., in a low-dimensional non-parametric setting.
Fig. 3 shows the distribution recovered by the Markov chain for discrete data with only 10 different
values. The conditional P (X|X̃) was estimated by multinomial models and maximum likelihood
(counting) from 5000 training examples. 5000 samples were generated from the chain to estimate
the asymptotic distribution πn(X). For continuous data, Figure 3 also shows the result of 5000
generated samples and 500 original training examples with X ∈ R10, with scatter plots of pairs of
dimensions. The estimator is also non-parametric (Parzen density estimator of P (X|X̃)).

Figure 3: Top left: histogram of a data-generating distribution (true, blue), the empirical distribution
(red), and the estimated distribution using a denoising maximum likelihood estimator. Other figures:
pairs of variables (out of 10) showing the training samples and the model-generated samples.
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MNIST digits. We trained a DAE on the binarized MNIST data (thresholding at 0.5). A Theano1

(Bergstra et al., 2010) implementation is available2. The 784-2000-784 auto-encoder is trained for
200 epochs with the 50000 training examples and salt-and-pepper noise (probability 0.5 of corrupt-
ing each bit, setting it to 1 or 0 with probability 0.5). It has 2000 tanh hidden units and is trained by
minimizing cross-entropy loss, i.e., maximum likelihood on a factorized Bernoulli reconstruction
distribution. With walkback training, a chain of 5 steps was used to generate 5 corrupted examples
for each training example. Figure 4 shows samples generated with and without walkback. The
quality of the samples was also estimated quantitatively by measuring the log-likelihood of the test
set under a non-parametric density estimator P̂ (x) = meanX̃P (x|X̃) constructed from 10000 con-
secutively generated samples (X̃ from the Markov chain). The expected value of E[P̂ (x)] over the
samples can be shown (Bengio and Yao, 2013) to be a lower bound (i.e. conservative estimate) of
the true (implicit) model density P (x). The test set log-likelihood bound was not used to select
among model architectures, but visual inspection of samples generated did guide the preliminary
search reported here. Optimization hyper-parameters (learning rate, momentum, and learning rate
reduction schedule) were selected based on the training objective. We compare against a state-of-
the-art RBM (Cho et al., 2013) with an AIS log-likelihood estimate of -64.1 (AIS estimates tend
to be optimistic). We also drew samples from the RBM and applied the same estimator (using the
mean of the RBM’s P (x|h) with h sampled from the Gibbs chain), and obtained a log-likelihood
non-parametric bound of -233, skipping 100 MCMC steps between samples (otherwise numbers are
very poor for the RBM, which does not mix at all). The DAE log-likelihood bound with and without
walkback is respectively -116 and -142, confirming visual inspection suggesting that the walkback
algorithm produces less spurious samples. However, the RBM samples can be improved by a spatial
blur. By tuning the amount of blur (the spread of the Gaussian convolution), we obtained a bound
of -112 for the RBM. Blurring did not help the auto-encoder.

Figure 4: Successive samples generated by Markov chain associated with the trained DAEs ac-
cording to the plain sampling scheme (left) and walkback sampling scheme (right). There are less
“spurious” samples with the walkback algorithm.

5 Conclusion and Future Work
We have proven that training a model to denoise is a way to implicitly estimate the underlying data-
generating process, and that a simple Markov chain that alternates sampling from the denoising
model and from the corruption process converges to that estimator. This provides a means for
generating data from any DAE (if the corruption is not degenerate, more precisely, if the above
chain converges). We have validated those results empirically, both in a non-parametric setting and
with real data. This study has also suggested a variant of the training procedure, walkback training,
which seem to converge faster to same the target distribution.

One of the insights arising out of the theoretical results presented here is that in order to reach the
asymptotic limit of fully capturing the data distribution P(X), it may be necessary for the model’s
P (X|X̃) to have the ability to represent multi-modal distributions over X (given X̃).
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