Bit-Slicing FPGA Accelerator for
Quantized Neural Networks

Olexa Bilaniuk*, Sean Wagner', Yvon Savaria* and Jean-Pierre David!
*Mila, University of Montreal, Montreal, QC, Canada
fIBM Canada, Markham, ON, Canada
iPolytechnique Montreal, Montreal, QC, Canada

Abstract—Deep Neural Networks (DNNs) become the state-of-
the-art in several domains such as computer vision or speech
recognition. However, using DNNs for embedded applications is
still strongly limited because of their complexity and the energy
required to process large data sets. In this paper, we present the
architecture of an accelerator for quantized neural networks and
its implementation on a Nallatech 385-A7 board with an Altera
Stratix V GX A7 FPGA. The accelerator’s design centers around
the matrix-vector product as the key primitive, and exploits
bit-slicing to extract maximum performance using low-precision
arithmetic.

Index Terms—Neural Networks, Accelerators, BNN, CNN,
RNN, QNN, FPGA

I. INTRODUCTION

Artificial neural networks have attracted much attention re-
cently, for the (super-) human performance they offer in many
applications. But their massive computational requirements
make them impractical for generic processors, and hardware
accelerators are needed. Several designs have cropped up and
strike different balances of performance and accuracy against
hardware resource usage: size, complexity, computation, time,
storage, energy, area and other criteria. Although purely Appli-
cation Specific Integrated Circuit (ASIC) hardware solutions
seem precluded by the extremely rapid development cycle of
new state-of-the-art neural networks, the well-known, more
flexible solutions, like DSPs, CPUs or GPUs, have drawbacks
such as high energy consumption and cost.

A promising path for improving the hardware perfor-
mance of neural networks is extreme quantization: using low-
precision and fixed-point rather than high-precision or floating-
point arithmetic. A seminal work in this vein is BinaryNet
(BNN) [1] in which both weights and activations are either
+1 or -1. BNNs significantly decrease computational intensity,
since operations are reduced to bitwise logical operators and
popcounts. Ternary [2], two-bit [3], and six-bit [4] represen-
tations have also been seen. Significant energy savings can
result from low-precision arithmetic, because of the reduced
storage, transfer and computation requirements [S].

Several Quantized Neural Network (QNN) accelerators
have been implemented using Field-Programmable Gate Ar-
rays (FPGAs) due to their support for arbitrary quantization
schemes, fast implementation, and energy efficiency [6]. BNNs

978-1-7281-0397-6/19/$31.00 ©2019 IEEE

are a common target for these accelerators [7], [8]. The FINN
(Framework for Fast, Scalable Binarized Neural Network
Inference) architecture [9] uses a streaming architecture that
is customized at compile-time of the FPGA logic. Similarly,
the AccELB project [10] implements a streaming data flow
that allows for different bit-widths on each layer of the
neural network. In DNNBuilder [11], the software analysis
of trained network models is done to exploit multiple degrees
of parallelism while balancing memory bandwidth to generate
a highly optimized pipeline.

There are a number of challenges with FPGA-based QNNss.
Using a single low-bit-width numerical format throughout
the QNN can limit the overall achievable accuracy, but may
simplify the design. Some designs do vary bit-widths with
layers, but fix the bit-width at accelerator synthesis time. Bit-
serial processing, such as used in the Loom [12] and BISMO
[13] architectures, is one solution so long as high overall
throughput via parallelism can be maintained. FPGAs are
limited by logic resources, on-chip memory capacity and off-
chip bandwidth. The on-chip capacity of the largest FPGAs
is still too small (~50Mbit) to contain large models, and off-
chip data movements’ energy cost can exceed that of on-chip
movements by as much as two orders of magnitude [5].

In this paper, a new QNN accelerator architecture supporting
arbitrary low-precision fixed-point formats is introduced. The
proposed architecture enables to process the inference pass
in large neural networks while implementing an efficient
streaming data flow in a flexible pipelined scheme that limits
movement of data to off-chip memory. Designs are imple-
mented in an FPGA of modest size, while providing for high
overall computational throughput and energy efficiency.

II. PROPOSED ARCHITECTURE

Computations in today’s neural networks are almost invari-
ably a large number of linear-algebraic operations with a small
admixture of elementwise non-linear activations [14]-[17].
While these activation functions may be relatively expensive
transcendental functions, such activations have waned in pop-
ularity recently, and have been replaced by simple piecewise-
linear functions such as the ReLU (y = max(0,x)) [18] and
its variants. Not only do they perform better, but they are also
better-suited for hardware adaptations.

laura
Highlight

laura
Highlight

laura
Highlight

laura
Highlight

laura
Highlight

laura
Highlight

laura
Highlight

laura
Highlight

laura
Highlight

laura
Highlight

laura
Highlight

laura
Highlight

A QNN accelerator design is therefore called to dedicate
most of its resources to linear operations, while balancing them
with non-linear activation throughput. This linear operation is
most commonly the BLAS Level 3 operation GEMM (GEneral
Matrix-Matrix product), since all linear operations can be
expressed in terms of matrix multiplications. GEMM is also
often the most optimized primitive in high-performance com-
puting. All other linear operations are then retrofitted into that
primitive. An example of this philosophy is NVIDIA’s cuDNN
[19], a collection of neural network kernels for RNN and
CNN acceleration, in which all convolutions are reinterpreted
in terms of the matrix multiplication of the input tensor by
a suitable Toeplitz matrix materialized just-in-time within the
device.

GEMM can be very easily mapped to FPGA with a 2D
systolic array. But GEMM is not universally suitable as a
primitive. For instance, an RNN accelerator deployed in the
field does not have the benefit of batching, and its matrix-
matrix linear operations therefore involve a “matrix” of a sin-
gle column - a vector. Complications such as strided or dilated
(sparse) convolutions [20] mean that efficiently materializing
the correct matrices can be a difficult task. It is of interest
that a large GEMM primitive generally implies streaming of
whole tensors to and from external memory, precisely what
we decry as energy-wasteful in Section I.

Therefore, a slightly different approach is adopted in this
paper. Conceding that GEMM is not always ideal, we will
instead adopt the BLAS Level 2 operation GEMV (GEneral
Matrix-Vector product) as our basic linear operation. Riffing
on [12], [13], we will perform GEMV products with multi-
bit operands bit-serially, yet the GEMV operation as a whole
is parallelized using bit-slicing. Multiple independent GEMV
units can be instantiated, and can provide extra, inter, or intra-
layer parallelism; We will call these independent units Matrix-
Vector Units. These MVUs communicate over an interconnect,
sending messages containing the data vector they’re operating
upon.

A. Matrix-Vector Unit

The Matrix-Vector Unit (MVU) is at the heart of the design.
Each MVU performs one n x n-element by n-element matrix-
vector multiplication, where both the matrix and vector are
binary (their elements are single bits). The result of such a
product is a new n-element vector of ~log, n bits each that
is then accumulated into an n-wide vector accumulator register
every clock cycle.

An MVU also integrates a combined max-pooling and
Rectified Linear UNit (ReLU) at the accumulator output to
downsample and reduce the bitwidth of the accumulator to
binary or ternary precision, fit for storage or sending over the
interconnect.

The matrix-vector product primitive suffices to implement
almost all common linear operations in a neural network:

RDD_.ADDR

y += W _— /
i
Data BRAMs Weights BRAMs
Crosshar

Fig. 1. MVU

matrix-vector products, matrix-matrix products, 1D, 2D and
3D convolutions with or without striding and/or dilation, and
at arbitrary precision using bit slicing.

B. Bit Slicing

Judd [21] introduced a strategy allowing neural network ac-
celerators to use arbitrary-precision : bit-serial multiplication.
We make use of a similar strategy in our design.

Any arbitrary-precision r-bit by s-bit scalar multiplication
can be performed bit-serially by a sequence of rs 1-bit-by-
1-bit multiplications (AND operations), shifts and accumu-
lations. We extend this to arbitrary-precision n X n matrix-
vector operations by performing, over the course of rs steps,
rs 1-bit-by-1-bit, n X n matrix-vector products, and likewise
accumulating and shifting their result to produce a high-
precision matrix-vector product.

In order to reduce the hardware requirement to just an
adder and a 1-bit left-shifter, we adopt a specific order of
encounter for each bit product, namely a zig-zag from the
most-significant products to the least-significant products, as
illustrated in Figure 2. The zig-zag pattern begins at the
product of the MSB by the MSB, then all bit-products of the
same weight are performed before shifting left the accumulator
by 1 bit and moving on to the next-lower-weight set of
products, finishing at the product of the LSB by the LSB.

If the bitwidth of the weights is w bits and the bitwidth
of the data is d bits, the cost of bit-serial multiplication
is precisely wd, and scales linearly in the precision of
both operands. This allows fine-grained exploration of the
precision-performance trade-off, and dynamic adaptation of
precision to every layer’s needs.

laura
Highlight

laura
Highlight

laura
Highlight

laura
Highlight

laura
Highlight

X 011011
SB LSB
MSB
10100
LSB
+
+
+
+
+

1000011100
Fig. 2. Scalar Bit-Serial Product. Zig-Zag Order of Encounter.

C. Data and Weights Layout

To exploit bit-slicing, the data vectors and weights ma-
trix tiles in each MVU are stored in striped fashion. All
most-significant-bits are stored and processed together, as are
all second-most-significant bits, ...and so on till the least-
significant bits.

Data vectors are 2n bits large, allowing for n ternary or
binary elements. For the purposes of quantized CNN and
RNN, element i of the data vector belongs to feature map
i (mod n) of the convolutional or fully-connected layer. All
elements also share the same spatial coordinates within the
tensor; For instance, when implementing 2D convolution, all
elements of the same vector share the same (z,y) coordinates.
Data vectors are relatively small, and so can be communicated
to other MV Us.

Data vectors are spread across 32 data banks. Each bank
supports one read and one write simultaneously; Multiple
simultaneous reads or writes are handled by deconfliction logic
with a static priority scheme.

Weights tiles are n x n bits large and binary-only. For
the purposes of quantized CNN, they map a subset of n
input feature maps to n output feature maps. For RNN and
GEMM, they are simply an n x n tile of the matrix product
being implemented. This organization allows data vectors to
still represent a single spatial coordinate after matrix-vector
multiplication. Weights tiles are static to the MVU and do not
move, on account of their large size.

D. Interconnect

More than one MVU may be instantiated in a design, if
resources allow. This allows multiple MVUs to work col-
laboratively on the same, or different, layers. To allow data
vector message-passing between independent MVUs, a fast
yet flexible interconnect is required, both at prototyping time
and at deployment time. It is desirable that it blocks either
rarely or never, and that it supports multicast and broadcast of
data vectors.

1) Crossbar: The simplest and most common interconnect
that supports this is the basic crossbar interconnect, which
links every MVU to every other MVU. For N MVUs, this
leads to N2 crosspoints, and therefore the crossbar’s logic
cost scales as O(N?) and its delay scales as O(log, n).

Nevertheless, for a reasonably small number of MVUs, the
crossbar remains an acceptable solution. On a Stratix V GX
A7,up to N = 8 MVUs of size 64 x 64 can be simultaneously
synthesized, resulting in a tolerable 8 x 8 = 64 crosspoints.

2) Crosspoint Pruning: When deploying a neural network
onto the MV Us, it may be possible to determine ahead-of-time
that a particular neural network will never exercise a particular
MVU-MVU crosspoint. If so, it can be pruned away from the
crossbar at design compile time. If each MVU communicates
with only one or two other MVUs in a ring/star topology (as is
common for feedforward networks with few skip connections),
this reduces the cost of the interconnect to O(n).

III. NEURAL NETWORK IMPLEMENTATION
A. Linear operations

The use of matrix-vector products and our data layout
allows us to implement all common varieties of convolution,
as well as classic GEMM, by tiling them into their constituent
matrix-vector products. Convolutions of any width or height,
subsampled and/or dilated (a-trous), are supported through
appropriate indexing of the data banks, which may be done in
software.

B. Non-Linear operations

Extreme quantization simplifies somewhat the choice of
non-linearity. In BNNs, non-linearities are not necessary; Mere
thresholding against zero suffices. For less severely-quantized
neural networks, the ReLU family offers a good compromise
between complexity and performance. We adopt PACT [22],
which has a superset of ReLU’s capabilities and possesses a
learned upper bound «.

C. Data Flow

An FPGA’s on-chip memory is too limited to store entirely
the data tensors that result from CNN processing. But spilling
and reloading the tensors from off-chip memory is undesirable,
and severely limited by the available bandwidth. A strategy
to reduce the on-chip BRAM memory use is to process
tensor data slice-by-slice, retaining only a local neighbourhood
around the current location, and performing multiple layers
simultaneously. This strategy reduces the memory cost of
filtering an image of width w and height A from O(wh) to
O(wFy), where Fy is the height in taps of the aforemen-
tioned filter. It also reuses on-chip data for further processing,
rather than spilling it.

laura
Highlight

laura
Sticky Note
MSB

Layer 1

Y

Fig. 3. Data Flow

D. Layer Mapping to MVUs

In order to make best use of the parallel processing capa-
bilities of the MVUs and to minimize the traffic to/from the
limited external memory interface, while accounting for the
locality of the weights to individual MV Us, it is desirable to
assign the weights of sequential layers of a neural network to
consecutive MV Us. In the case of CNNs, this allows all MVUs
to begin processing their respective image rows of data as soon
as they become available, preventing them from idling.

Additionally, if the CNN is purely or approximately feed-
forward, mapping its layers in a round-robin fashion results
in a roughly even distribution of weights between all MVUs,
and only a lightweight ring interconnect is required.

IV. RESULTS

We simulated the design using Altera Quartus Prime 15.1.
It was also synthesized, placed and routed for a target Altera
Stratix V GX A7 FPGA. Power consumption predicted by
Quartus is approximately 20.883W for an 8-MVU design,
as seen in Figure 4. At 250 MHz, the total throughput is
8.2 binary-ternary TMAC/s. This is to be compared with an
NVIDIA P100 GPU’s 300W for 10 single-precision TFLOP/s.

V. CONCLUSION

We have proposed a novel, compact, parametrizable power-
efficient neural network architecture for quantized neural net-

Time t

Resource Usage
ALM 157929 (67%)
BRAM 32 Mbit (64%)
DSP Slices 0 (0%)
Frequency 250 MHz
Power* 20.883 W
Fig. 4. Resources for eight-MVU 64 x 64 design. *Toggle rate 25%
Unit # ALM
Interconnect 1 3096
MVU 19000
Dot-Product 64 | 12000
Bank Conflict Resolvers 32 5400
Accumulator 64 1300
Max-Pooling 64 | 2250

Fig. 5. Breakdown of logic usage per unit

works that has several desirable properties. Its performance
scales dynamically with the precision of both the neural
network’s weights and its activations, reaching maximum
performance for BinaryNet acceleration (1-bit weight, 1-bit
activation), through use of bit-slicing. The architecture is scal-
able, since as many MVUs as desired within the constraints of
the target FPGA may be synthesized, and the neural network’s
layers partitioned among them. A well-chosen data layout
allows for a streaming data-flow that minimizes spills and
reloads from off-chip memory, reducing power consumption.
On Stratix V GX A7, eight 64 x 64 MVUs may carry out
250K ternary-binary matrix-vector operations per second, or
8.2 TMACY/s, using 20.883 Watts, or 392 GMAC/s/W.

ACKNOWLEDGMENT

The authors would like to thank IBM and the SOSCIP
program for providing access to an FPGA development en-
vironment and support, and COHESA and Samsung for other
support and funding. During the course of this research, GPUs
from Compute Canada’s Cedar & Graham clusters were made
use of. A special thank-you to Brian Kingsbury of IBM for a
very important conversation that led to the abandonment of a
previous approach in favour of the one presented in this paper.

REFERENCES

[1] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1" arXiv preprint
arXiv:1602.02830, 2016.

[2] C.Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
in International Conference on Learning Representations, 2017.

[3] G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating deep
convolutional networks using low-precision and sparsity,” 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Mar 2017. [Online]. Available: http://dx.doi.org/10.1109/
ICASSP.2017.7952679

[4] 1. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low preci-
sion weights and activations,” 2016.

laura
Highlight

laura
Highlight

[5]

[6]
[7]

[8]

[9]

[10]

(1]

[12]

[13]

M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014 IEEE International. 1EEE, 2014, pp. 10-14.

G. Lacey, G. W. Taylor, and S. Areibi, “Deep learning on fpgas: Past,
present, and future,” arXiv preprint arXiv:1602.04283, 2016.

E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating binarized neural networks: Comparison of
fpga, cpu, gpu, and asic,” in 2016 International Conference on Field-
Programmable Technology (FPT), Dec 2016, pp. 77-84.

A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN: Wide
reduced-precision networks,” in International Conference on Learning
Representations, 2018. [Online]. Available: https://openreview.net/
forum?id=B1ZvaaeAZ

Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM, 2017,
pp. 65-74.

J. Wang, Q. Lou, X. Zhanng, C. Z. Zhu, Y. Lin, and D. Chen, “Design
flow of accelerating hybrid extremely low bit-width neural network in
embedded fpga,” in International Conference on Field-Programmable
Logic and Applications (FPL), 2018.

X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and
D. Chen, “Dnnbuilder: an automated tool for building high-performance
dnn hardware accelerators for fpgas,” in International Conference on
Computer Aided Design (ICCAD), 2018.

S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos, “Loom:
Exploiting weight and activation precisions to accelerate convolutional
neural networks,” in Proceedings of the 55th Annual Design Automation
Conference. ACM, 2018, p. 20.

Y. Umuroglu, L. Rasnayake, and M. Sjalander, “Bismo: A scalable
bit-serial matrix multiplication overlay for reconfigurable computing,”
in Field Programmable Logic and Applications (FPL), 2018 28th
International Conference on, ser. FPL *18, 2018.

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Neural Information Pro-
cessing Systems, vol. 25, 01 2012.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun 2016. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2016.90

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun 2015. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2015.7298594

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 315-323.

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” ArXiv e-prints, mar 2016.

P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in Microarchitec-
ture (MICRO), 2016 49th Annual IEEE/ACM International Symposium
on. IEEE, 2016, pp. 1-12.

J. Choi, Z. Wang, S. Venkataramani, P. 1.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “Pact: Parameterized clipping activation for
quantized neural networks,” arXiv preprint arXiv:1805.06085, 2018.

	Select a link below
	Return to Main Menu

