Towards the The Latent Transcriptome

Bioinformatics
Oct 2018

Towards the The Latent Transcriptome

Oct 2018

In this work we propose a method to compute continuous embeddings for kmers from raw RNA-seq data of the transcriptome, without the need for alignment to a reference genome. The approach uses an RNN to transforms kmers of the RNA-seq reads into a 2 dimensional representation that is used to predict abundance of each kmer. In this latent transcriptome we observe the grouping of kmers that corresponds to the genes that they are expect to belong to. More info:
Paper Slides

Assya Trofimov, Francis Dutil, Claude Perreault, Sebastien Lemieux, Yoshua Bengio, Joseph Paul Cohen. Towards the Latent Transcriptome. 2018, http://arxiv.org/abs/1810.03442.

Reference

Linked Profiles

array(1) { ["wp-wpml_current_language"]=> string(2) "en" }

Mila goes virtual

Starting March 16, 2020, Mila shifts its activities to virtual platforms in order to minimize COVID-19 diffusion.

Read more