Beyond Backprop: Online Alternating Minimization with Auxiliary Variables

Dec 2019

Beyond Backprop: Online Alternating Minimization with Auxiliary Variables

Dec 2019

Despite significant recent advances in deep neural networks, training them remains a challenge due to the highly non-convex nature of the objective function. State-of-the-art methods rely on error backpropagation, which suffers from several well-known issues, such as vanishing and exploding gradients, inability to handle non-differentiable nonlinearities and to parallelize weight-updates across layers, and biological implausibility. These limitations continue to motivate exploration of alternative training algorithms, including several recently proposed auxiliary-variable methods which break the complex nested objective function into local subproblems. However, those techniques are mainly offline (batch), which limits their applicability to extremely large datasets, as well as to online, continual or reinforcement learning. The main contribution of our work is a novel online (stochastic/mini-batch) alternating minimization (AM) approach for training deep neural networks, together with the first theoretical convergence guarantees for AM in stochastic settings and promising empirical results on a variety of architectures and datasets.

Reference

Linked Profiles

array(1) { ["wp-wpml_current_language"]=> string(2) "en" }

Mila goes virtual

Starting March 16, 2020, Mila shifts its activities to virtual platforms in order to minimize COVID-19 diffusion.

Read more