Contextual Bandit with Restricted Context

Mila > Publication > Contextual Bandit with Restricted Context
Dec 2019

Contextual Bandit with Restricted Context

Dec 2019

We consider a novel formulation of the multi-armed bandit model, which we call the con-textual bandit with restricted context, where only a limited number of features can be accessed by the learner at every iteration. This novel formulation is motivated by different online problems arising in clinical trials, recommender systems and attention modeling. Herein, we adapt the standard multi-armed bandit algorithm known as Thompson Sampling to take advantage of our restricted context setting, and propose two novel algorithms, called the Thompson Sampling with Restricted Context (TSRC) and the Windows Thompson Sampling with Restricted Context (WTSRC), for handling stationary and nonstationary environments, respectively. Our empirical results demonstrate advantages of the proposed approaches on several real-life datasets.

Read full publication

Reference

Linked Profiles

array(1) { ["wp-wpml_current_language"]=> string(2) "en" }