Geoffrey Gordon

Mila > About Mila > Team > Geoffrey Gordon
Core Industry Member
Geoffrey Gordon
Adjunct Professor, McGill University, Microsoft Research
Geoffrey Gordon

Dr. Gordon is the Research Director for the Microsoft Research Montréal lab, and a Professor in the Machine Learning Department at Carnegie Mellon University. He has also served as Interim Department Head and as Associate Department Head for Education for the Machine Learning Department. Dr. Gordon’s research has focused on artificially-intelligent systems that are capable of long-term thinking such as reasoning ahead to solve a problem, planning a sequence of actions or inferring unseen properties from observations. Particularly, he looks at how to combine machine learning with these long-term thinking tasks. Dr. Gordon received his B.A. in Computer Science from Cornell University in 1991, and his PhD in Computer Science from Carnegie Mellon University in 1999. His research interests include artificial intelligence, statistical machine learning, educational data, game theory, multi-robot systems, and planning in probabilistic, adversarial, and general-sum domains. His previous appointments include Visiting Professor at the Stanford Computer Science Department and Principal Scientist at Burning Glass Technologies in San Diego.

Publications

2021-05

Understanding and Mitigating Accuracy Disparity in Regression
Jianfeng Chi, Han Zhao, Geoff Gordon and Yuan Tian
arXiv e-prints
(2021-05-04)
ui.adsabs.harvard.eduPDF
Decomposing Mutual Information for Representation Learning
Alessandro Sordoni, Nouha Dziri, Hannes Schulz, Geoff Gordon, Remi Tachet des Combes and Philip Bachman
(venue unknown)
(2021-05-04)
openreview.netPDF
Fundamental Limits and Tradeoffs in Invariant Representation Learning
Han Zhao, Chen Dan, Bryon Aragam, Tommi S. Jaakkola, Geoff Gordon and Pradeep Kumar Ravikumar
arXiv e-prints
(2021-05-04)
ui.adsabs.harvard.eduPDF
Graph Adversarial Networks: Protecting Information against Adversarial Attacks
Peiyuan Liao, Han Zhao, Keyulu Xu, Tommi S. Jaakkola, Geoff Gordon, Stefanie Jegelka and Ruslan Salakhutdinov
arxiv:cs.LG
(2021-05-04)
dblp.uni-trier.dePDF

2021-03

Successor Feature Sets: Generalizing Successor Representations Across Policies
Kianté Brantley, Soroush Mehri and Geoffrey J. Gordon
arXiv preprint arXiv:2103.02650
(2021-03-03)
dblp.uni-trier.dePDF

2020-11

An Empirical Investigation of Beam-Aware Training in Supertagging.
Renato Negrinho, Matthew R. Gormley and Geoffrey J. Gordon

2020-09

Information Obfuscation of Graph Neural Networks.
Peiyuan Liao, Han Zhao, Keyulu Xu, Tommi Jaakkola, Geoffrey Gordon, Stefanie Jegelka and Ruslan Salakhutdinov
arXiv: Learning
(2020-09-28)
jp.arxiv.orgPDF

2020-05

De-Aliasing States In Dialogue Modelling With Inverse Reinforcement Learning
Layla El Asri, Adam Trischler and Geoff Gordon
(venue unknown)
(2020-05-01)
www.microsoft.com

2020-04

Conditional Learning of Fair Representations
Han Zhao, Amanda Coston, Tameem Adel and Geoffrey J. Gordon
Learning General Latent-Variable Graphical Models with Predictive Belief Propagation
Borui Wang and Geoffrey Gordon
AAAI 2020
(2020-04-03)
aaai.org

2020-03

Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift
Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang and Geoffrey J. Gordon

2020-01

Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation
Han Zhao, Jianfeng Chi, Yuan Tian and Geoffrey J. Gordon

2019-12

Expressiveness and Learning of Hidden Quantum Markov Models
Sandesh Adhikary, Siddarth Srinivasan, Geoffrey J. Gordon and Byron Boots

2019-11

A Reduction from Reinforcement Learning to No-Regret Online Learning
Ching-An Cheng, Remi Tachet des Combes, Byron Boots and Geoffrey J. Gordon

2019-09

Towards modular and programmable architecture search
Renato Negrinho, Darshan Patil, Nghia Le, Daniel Ferreira, Matthew Gormley and Geoffrey Gordon
arXiv preprint arXiv:1909.13404
(2019-09-30)
ui.adsabs.harvard.eduPDF
Adversarial Privacy Preservation under Attribute Inference Attack
Han Zhao, Jianfeng Chi, Yuan Tian and Geoffrey J. Gordon
(venue unknown)
(2019-09-25)
ui.adsabs.harvard.eduPDF

2019-07

Learning Neural Networks with Adaptive Regularization
Han Zhao, Yao-Hung Hubert Tsai, Russ R. Salakhutdinov and Geoffrey J. Gordon

2019-06

Adversarial Task-Specific Privacy Preservation under Attribute Attack.
Han Zhao, Jianfeng Chi, Yuan Tian and Geoffrey J. Gordon
arXiv: Learning
(2019-06-19)
dblp.uni-trier.de

2019-05

On Learning Invariant Representations for Domain Adaptation.
Han Zhao, Remi Tachet des Combes, Kun Zhang and Geoffrey J. Gordon
ICML 2019
(2019-05-24)
proceedings.mlr.pressPDF
Deep Generative and Discriminative Domain Adaptation
Han Zhao, Junjie Hu, Zhenyao Zhu, Adam Coates and Geoff Gordon
AAMAS 2019
(2019-05-08)
dblp.uni-trier.de

2019-01

On Learning Invariant Representation for Domain Adaptation
Han Zhao, Remi Tachet des Combes, Kun Zhang and Geoffrey J. Gordon
arXiv preprint arXiv:1901.09453
(2019-01-27)
ui.adsabs.harvard.eduPDF
Towards modular and programmable architecture search
Renato Negrinho, Matthew R. Gormley, Geoffrey J. Gordon, Darshan Patil, Nghia Le and Daniel Ferreira
NEURIPS 2019
(2019-01-01)
papers.nips.ccPDF
Inherent Tradeoffs in Learning Fair Representations
Han Zhao and Geoffrey J. Gordon

2018-12

Dual Policy Iteration
Wen Sun, Geoffrey Gordon, Byron Boots and J. Bagnell
NEURIPS 2018
(2018-12-03)
papers.nips.ccPDF
Learning Beam Search Policies via Imitation Learning
Renato Negrinho, Matthew Gormley and Geoffrey Gordon
Adversarial Multiple Source Domain Adaptation
Han Zhao, Shanghang Zhang, Guanhang Wu, José M. F. Moura, Joao P Costeira and Geoffrey Gordon
NEURIPS 2018
(2018-12-03)
papers.nips.ccPDF

2018-09

An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio and Geoffrey J. Gordon

Publications collected and formatted using Paperoni

array(1) { ["wp-wpml_current_language"]=> string(2) "en" }